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ABSTRACT

In the discrete domain, self-adjusting parameters of evolutionary

algorithms (EAs) has emerged as a fruitful research area with many

runtime analyses showing that self-adjusting parameters can out-

perform the best fixed parameters. Most existing runtime analyses

focus on elitist EAs on simple problems, for which moderate perfor-

mance gains were shown. Here we consider a much more challeng-

ing scenario: the multimodal function Cliff, defined as an example

where a (1, 𝜆) EA is effective, and for which the best known upper

runtime bound for standard EAs is 𝑂 (𝑛25).
We prove that a (1, 𝜆) EA self-adjusting the offspring population

size 𝜆 using success-based rules optimises Cliff in 𝑂 (𝑛) expected
generations and 𝑂 (𝑛 log𝑛) expected evaluations. Along the way,

we prove tight upper and lower bounds on the runtime for fixed 𝜆

(up to a logarithmic factor) and identify the runtime for the best

fixed 𝜆 as 𝑛𝜂 for 𝜂 ≈ 3.9767 (up to sub-polynomial factors). Hence,

the self-adjusting (1, 𝜆) EA outperforms the best fixed parameter

by a factor of at least 𝑛2.9767 (up to sub-polynomial factors).
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1 INTRODUCTION

Evolutionary algorithms (EAs) as well as other Randomised Search

Heuristics are used to solve a wide range of problems in part owing

to their ease of implementation and their effectiveness in problems
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with little a priori knowledge. When applying an EA, a crucial task

is to determine suitable parameters for the problem in hand such as

mutation rate, crossover probability, population sizes, among others.

In fact, it is well understood that the efficiency of the algorithms

may depend drastically on their parameters [9], even to the point

where small changes to the parameters can increase the runtime

from polynomial to exponential [22, 33]. Tomakematters worse, the

optimal parameters may change during the optimisation problem,

hence any static parameter choice may be sub-optimal [9].

Parameter control mechanisms aim to solve this problem by

using dynamic parameter settings that adjust to the current state

of the optimisation identifying and tracking the optimal parameter

settings. Doerr and Doerr [9] have classified them into several types;

here we focus on success-based (also called self-adjusting) parameter

control mechanisms for their simplicity. In continuous optimisation,

parameter control mechanisms have been used as standard for

several decades because it is crucial to ensure convergence to the

optimum. In contrast, in the discrete domain parameter control

had not been as widely used in the past. In recent years it has

become more common in part owing to runtime analyses showing

that parameter control mechanisms can outperform the best static

parameter settings, see the survey by Doerr and Doerr [9].

Here we highlight some examples relevant to this work where

parameter control mechansims have been proposed, along with

proven performance guarantees. Böttcher et al. [3] considered the

test function LeadingOnes(𝑥) := ∑𝑛
𝑖=1

∏𝑖
𝑗=1 𝑥𝑖 that counts the

number of consecutive ones at the start of the bit string 𝑥 . They

showed that fitness-dependent mutation rates can improve the per-

formance of the (1 + 1) EA on LeadingOnes by a constant factor.

Badkobeh et al. [1] presented an adaptive strategy for the mutation

rate in the (1+𝜆) EA that, for all values of 𝜆, leads to provably opti-

mal performance on OneMax. Lässig and Sudholt [20] presented

adaptive schemes for choosing the offspring population size in

(1+𝜆) EAs and the number of islands in an island model. Doerr

et al. [10] proposed a fitness-dependent offspring population size

of 𝜆 =
√
𝑛/(𝑛 − 𝑓 (𝑥)) for the (1 + (𝜆, 𝜆)) GA showing that it opti-

mises OneMax in 𝑂 (𝑛) evaluations which is asymptotically faster

than any static parameter choice and proposed a self-adjusting

mechanism based on the one-fifth rule that tracked the optimal

parameter in experiments. Later, Doerr and Doerr [8] proved that

the self-adjusting mechanism in the (1 + (𝜆, 𝜆)) GA has the same

asymptotic runtime on OneMax as the fitness-dependent mecha-

nism. Hevia Fajardo and Sudholt [16] studied modifications to the

self-adjusting mechanism in the (1 + (𝜆, 𝜆)) GA on Jump functions,

showing that they can perform nearly as well as the (1 + 1) EAwith

the optimal mutation rate. Doerr et al. [12] showed that a success-

based parameter control mechanism is able to identify and track the

optimal mutation rate in the (1+𝜆) EA on OneMax, matching the
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performance of the best known fitness-dependent parameter [1].

Mambrini and Sudholt [26] adapted the migration interval in island

models and showed that adaptation can reduce the communica-

tion effort beyond the best possible fixed parameter. Doerr et al.

[11] proved that a success-based parameter control mechanism

based on the one-fifth rule is able to achieve an asymptotically

optimal runtime on LeadingOnes. Lissovoi et al. [25] proposed a

Generalised Random Gradient Hyper-Heuristic that uses a learning

period of 𝜏 steps that can learn to adapt the neighbourhood size of

Randomised Local Search optimally during the run on Leading-

Ones. They proved that it has the best possible runtime achievable

by any algorithm that uses the same low level heuristics. This re-

sult required the correct selection of the learning period 𝜏 ; this

was later solved using a self-adjusting mechanism adapting the

learning period having an optimal asymptotic expected runtime

on LeadingOnes [13], OneMax and Ridge [24]. Rajabi and Witt

[30] used a self-adjusting asymmetric mutation that can provide

a constant-factor speed-up on OneMax over asymmetric muta-

tions [19] and obtained the same asymptotic performance on the

generalised OneMax function. Rajabi and Witt [31] proposed a

stagnation detection mechanism that raises the mutation rate when

the algorithm is likely to have encountered a local optima. The

mechanism can be added to any existing EA; when added to the

(1 + 1) EA, the SD–(1 + 1) EA has the same asymptotic runtime on

Jump as the optimal parameter setting. In a follow up study, Rajabi

and Witt [32] added the stagnation detection mechanism to the

RLS obtaining a constant factor speed-up from the SD–(1 + 1) EA.
Most of the above analyses concern elitist EAs; there are very

few studies of parameter control mechanisms for EAs using non-

elitist selection. The first runtime analysis to show an asymptotic

speedup for parameter control mechanisms in non-elitist EAs was

presented by Dang and Lehre [6], showing that for a tailored mul-

timodal function a self-adaptive EA is able to adjust the mutation

rate, leading to exponential speedup over EAs with static mutation

rates. Case and Lehre [4] showed a speedup for a self-adaptive

(𝜇, 𝜆) EA on the LeadingOnes problem with unknown solution

length. Similarly Doerr et al. [14] proved that a self-adaptive mech-

anism for the mutation rate in the (1,𝜆) EA with a sufficiently large

𝜆 has the same asymptotic expected runtime on OneMax as in

[1]. Lissovoi et al. [23] proposed a hyper-heuristic that chooses be-

tween elitist and non-elitist heuristics that achieves the best known

expected runtime for general purpose randomised search heuris-

tics on the problem class Cliff𝑑 . The present authors proved that

a self-adjusting mechanism based on the one-fifth rule is able to

find and maintain suitable parameter values of 𝜆 for the (1, 𝜆) EA
leading to an asymptotically optimal runtime on OneMax [17].

We argue that providing runtime analyses of parameter con-

trol mechanisms for non-elitist EAs is an important direction for

research. One reason is that non-elitist algorithms are frequently

used in practice and understanding the dynamics of non-elitist EAs

is vital to narrow the gap between theory and practice. Further-

more, and perhaps more importantly, many existing theoretical

studies concern fairly easy problems on which algorithms with

static parameters already run efficiently, and so the performance

gains obtained through parameter control are often moderate at

best. More research effort should be devoted to considering non-

elitist EAs on more challenging problems since the potential for

performance improvements is much greater.

1.1 Our contribution

In this work we provide an example of significant performance

improvements through parameter control for a multimodal problem.

We study the (1, 𝜆) EA on the multimodal problem Cliff [18] with

a mechanism to self-adjust the choice of the offspring population

size 𝜆. The function Cliff (formally defined in Section 2) typically

requires EAs to jump down a “cliff” by accepting a huge loss in

fitness, and then to climb up a slope towards the global optimum.

Elitist EAs are unable to accept this fitness loss and typically need

to jump directly to the global optimum (Theorem 8 in [29] gives a

tight bound for the (1+1) EA). The (1, 𝜆) EA is able to jump down

the cliff if and only if all offspring are generated at the bottom

of the cliff. Hence, the smaller the population size, the higher the

probability of jumping down the cliff. However, the (1, 𝜆) EA also

needs to be able to climb up a OneMax-like slope towards the

cliff and towards the global optimum. The offspring population

size 𝜆 must be large enough to enable hill climbing. Rowe and

Sudholt [33] showed that there is a phase transition on OneMax

at log 𝑒
𝑒−1

𝑛. More specifically, 𝜆 ≥ log 𝑒
𝑒−1

𝑛 is sufficient to optimise

OneMax efficiently, in expected 𝑂 (𝑛 log(𝑛) + 𝜆𝑛) evaluations, but
all 𝜆 ≤ (1−𝜀) log 𝑒

𝑒−1
𝑛 lead to exponential optimisation times. Every

fixed value of 𝜆 must strike a delicate balance to enable jumps down

the cliff and at the same time being able to hill climb. Jägersküpper

and Storch [18] showed a bound of 𝑂 (𝑒5𝜆) for 𝜆 ≥ 5 ln𝑛, which

gives an upper bound of 𝑂 (𝑛25) for 𝜆 = 5 ln𝑛. To our knowledge,

this is the best known upper bound for the runtime of the (1, 𝜆) EA
to date. A lower bound of min{𝑛𝑛/4, 𝑒𝜆/4}/3 for all 𝜆 was shown

in [18]. Comparing the term 𝑒𝜆/4 ≈ 1.284𝜆 to the upper bound of

order 𝑒5𝜆 ≈ 148.413𝜆 , the exponents (to the base of 𝑒) differ by a

factor of 20 and the bases to the power of 𝜆 differ by a factor larger

than 115. This leaves a large polynomial gap between upper and

lower bounds for 𝜆 = Θ(log𝑛).
We refine results from [18] and show that the runtime is Ω(𝜉𝜆)

and 𝑂 (𝜉𝜆 log𝑛) for a base of 𝜉 ≈ 6.196878, for reasonable values

of 𝜆. For the best fixed 𝜆, we show that the expected runtime is

𝑂 (𝑛𝜂 log𝑛) for a constant 𝜂 ≈ 3.976770136, and that it grows faster

than any polynomial of degree less than 𝜂.

More importantly, we then show that parameter control is highly

beneficial in this scenario. We present a self-adjusting (1, 𝜆) EA
that self-adjusts 𝜆 and prove that it is able to optimise Cliff in

𝑂 (𝑛) expected generations and 𝑂 (𝑛 log𝑛) expected evaluations.

This is faster than any static parameter choice by a factor of

Ω(𝑛2.9767/log𝑛) and it is asymptotically the best possible runtime

for any unary unbiased black-box algorithm [21].

We remark that this is the first bound of𝑂 (𝑛 log𝑛) for a standard
evolutionary algorithm on Cliff; previously, 𝑂 (𝑛 log𝑛) bounds
were only achieved by using additional mechanisms such as age-

ing [5] and hyper-heuristics [23].

Our analysis builds on our previous work [17] that analysed a

similar algorithm on the simple OneMax function. The considered

algorithm works using a variant of the famous one-fifth success

rule: in a generation in which the current fitness is increased (a
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success), 𝜆 is decreased by a factor of 𝐹 , where 𝐹 is a parameter.

In an unsuccessful generation, 𝜆 is increased by a factor of 𝐹 1/𝑠 .
The parameter 𝑠 is called the success rate and it implies that, if on

average one in 𝑠 + 1 generations is successful, the current value

of 𝜆 is maintained (as we have one success and 𝑠 unsuccessful

generations and so 𝜆𝑡+𝑠+1 = 𝜆𝑡 · (𝐹 1/𝑠 )𝑠 · 1/𝐹 = 𝜆𝑡 ).

In [17] we showed that with a success rate of 0 < 𝑠 < 𝑒−1
𝑒

the self-adjusting (1, 𝜆) EA optimises OneMax in 𝑂 (𝑛) expected
generations and 𝑂 (𝑛 log𝑛) expected evaluations. We also showed

that larger parameters lead to exponential times. Hence, we use the

same restriction 0 < 𝑠 < 𝑒−1
𝑒 in this work.

To make the self-adjusting (1, 𝜆) EA work in multimodal opti-

misation, we need to tackle an important challenge that requires

a redesign of the self-adjusting (1, 𝜆) EA in [17]. Success-based

parameter control mechanisms can be problematic on multimodal

problems because once a local optimum is reached the success of

previous generations does not give a good indication of what pa-

rameters are needed to escape the local optimum. Strategies have

been proposed and analysed to solve this problem, showing a good

performance. Some examples from other contexts are: systemati-

cally increasing the mutation rate once the neighbourhood has been

searched in order to increase the radius of exploration [31, 32] or

resetting the parameter once it has reached a certain value, allowing

the algorithm to cycle through the possible parameter values [16].

We enhance the self-adjusting (1, 𝜆) EA from [17] with a reset-

ting mechanism: whenever 𝜆 exceeds a predefined maximum of

𝜆max, it is reset to 𝜆 = 1. When such a reset happens at the top of

the cliff, there is a good probability of jumping down the cliff.

Note that the resetting mechanism may have unwanted side

effects: resets may happen in difficult fitness levels, for instance on

Cliff resets may happen when climbing up the slope to the global

optimum and successes become rare. Hence we need to choose 𝜆max

sufficiently large to mitigate this risk and enhance the analysis of

the self-adjusting (1, 𝜆) EA on OneMax with additional arguments.

1.2 Outline

The paper is structured as follows. Section 2 gives necessary defi-

nitions and bounds transition probabilities.Since the current best

known upper and lower bounds for the (1, 𝜆) EA with static 𝜆 on

Cliff from [18] are far from tight, we first provide refined upper

and lower bounds that are tight up to a logarithmic factor in Sec-

tion 3. Our upper and lower bounds are then used to determine the

degree 𝜂 of the polynomial term in the runtime for the best fixed

value of 𝜆.

In Section 4 we show that despite the possibility of resetting 𝜆

near the optimum, the self-adjusting (1, 𝜆) EA is able to optimise

Cliff in expected 𝑂 (𝑛) generations and 𝑂 (𝑛 log𝑛) expected evalu-

ations. We divide the optimisation in several phases showing that

the algorithm is able to hill-climb effectively to both the local and

global optimum. When it encounters the local optimum, 𝜆 typically

increases to its maximum, increasing its selection pressure and

behaving like an elitist EA. But then 𝜆 is reset to 1, reducing the se-

lection pressure of the algorithm allowing it to escape local optima.

The behaviour in the local optima is similar to the behaviour of the

meta-heuristic from [23] where the algorithm changes from elitism

to non-elitism to jump out of local optimum and later on it behaves

roughly as a purely elitist algorithm. Some proofs are omitted due

to space limitations.

2 PRELIMINARIES

We present a runtime analysis of the self-adjusting (1, 𝜆) EA1
on

the 𝑛-dimensional pseudo-Boolean benchmark function Cliff.

2.1 The Cliff Function Class

We write |𝑥 |
1
to denote the number of one-bits in the bit string 𝑥 .

The Cliff benchmark function was first proposed by Jägersküpper

and Storch [18] as an example where non-elitism helps the opti-

misation process. The function is designed to guide hill-climbing

algorithms towards a local optimum (cliff ) where the global opti-

mum is the only other search point with a higher fitness value but it

is at a linear distance from the local optimum. An elitist algorithm

then needs to perform a large jump to find the global optimum;

a non-elitist algorithm instead can escape the local optimum by

performing a fitness-decreasing step that leads to another slope

guiding to the global optimum. An instance of Cliff with 𝑛 = 90 is

shown in Figure 1. We define the Cliff function as follows:

Cliff(𝑥) :=
{
|𝑥 |

1
if |𝑥 |

1
≤ 2𝑛/3,

|𝑥 |
1
− 𝑛/3 + 1/2 otherwise.

Following Lissovoi et al. [23] our definition of Cliff differs from

[18] in that the cliff is located at 2𝑛/3 one-bits instead of 2𝑛/3 − 1.
We choose this definition because it resembles the definition of the

Jump class functions and improves the readability of the runtime

analysis. Throughout the analysis we assume 𝑛 is divisible by 3.

Also following [23], we say that all search points 𝑥 with |𝑥 |
1
≤ 2𝑛/3

form the first slope and all other search points form the second slope.

Figure 1: Cliff(𝑥) with 𝑛 = 90

The Cliff function was used as a benchmark in several other

works, including studies of the Strong Selection Weak Mutation

(SSWM) model of evolution [29], artificial immune systems [5] and

hyper-heuristics [23].

2.2 The Self-Adjusting (1, 𝜆) EA
The self-adjusting (1, 𝜆) EA was first proposed in [17] and studied

on OneMax. The algorithm uses the generalised success based rule

(one-(𝑠+1)-th success rule) to adjust the offspring population size 𝜆.
If the fittest offspring 𝑦 is better than the parent 𝑥 , the offspring

population size is divided by the update strength 𝐹 , and multiplied

by 𝐹 1/𝑠 otherwise, with 𝑠 being the success rate.

1
named (1, {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA in [17]
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In this workwe consider a variation of the self-adjusting (1, 𝜆) EA
with a resetting mechanism for 𝜆 (see Algorithm 1) where 𝜆 is reset

to 1 if 𝜆 = 𝜆max and there is an unsuccessful generation. This

strategy has also been successfully applied to the self-adjusting

mechanism of the (1 + (𝜆, 𝜆)) GA in [16]. In addition, the strategy

is similar to the stagnation detection from [31, 32] in that if 𝜆max

is set appropriately when 𝜆 = 𝜆max the algorithm is likely to be

in a local optimum and the behaviour of the algorithm changes.

In this case when 𝜆 is large enough the algorithm maintains its

fitness with high probability, but when 𝜆 is reset to 1 the behaviour

changes to a pure random walk allowing the algorithm to escape

local optima.

Algorithm 1: Self-adjusting (1, {𝐹 1/𝑠𝜆, 𝜆/𝐹 }) EA reset-

ting 𝜆.

1 Initialization: Choose 𝑥 ∈ {0, 1}𝑛 uniformly at random

(u.a.r.) and set 𝜆 := 1;

2 Optimization: for 𝑡 ∈ {1, 2, . . . } do
3 Mutation: for 𝑖 ∈ {1, . . . , ⌊𝜆⌉} do
4 𝑦′

𝑖
∈ {0, 1}𝑛 ← standard bit mutation(𝑥);

5 Selection: Choose 𝑦 ∈ {𝑦′
1
, . . . , 𝑦′⌊𝜆⌉ } with

𝑓 (𝑦) = max{𝑓 (𝑦′
1
), . . . , 𝑓 (𝑦′⌊𝜆⌉ )} u.a.r.;

6 Update: 𝑥 ← 𝑦;

7 if 𝑓 (𝑦) > 𝑓 (𝑥) then 𝜆 ← max{𝜆/𝐹, 1};
8 if 𝑓 (𝑦) ≤ 𝑓 (𝑥) ∧ 𝜆 = 𝜆max then 𝜆 ← 1;

9 if 𝑓 (𝑦) ≤ 𝑓 (𝑥) ∧𝜆 ≠ 𝜆max then 𝜆 ← min{𝜆𝐹 1/𝑠 , 𝜆max};

Note that we regard 𝜆 to be a real value, so that changes by factors

of 1/𝐹 or 𝐹 1/𝑠 happen on a continuous scale. Following Doerr and

Doerr [8] and Hevia Fajardo and Sudholt [17], we assume that,

whenever an integer value of 𝜆 is required, 𝜆 is rounded to a nearest

integer. For the sake of readability, we often write 𝜆 as a real value

even when an integer is required.

In our analysis we define 𝑋0, 𝑋1, . . . as the sequence of states

of the algorithm, where 𝑋𝑡 = (𝑥𝑡 , 𝜆𝑡 ) describes the current search
point 𝑥𝑡 and the offspring population size 𝜆𝑡 at generation 𝑡 . We

often omit the subscripts 𝑡 when the context is obvious.

2.3 Transition Probabilities

We now define and estimate transition probabilities that apply to all

(1, 𝜆) EA variants (with or without self-adjustment) in the context

of OneMax and Cliff.

Definition 2.1. For all 𝜆 ∈ N we state the following definitions

from [17] in the context of OneMax:

𝑝+
𝑖,𝜆

= Pr ( |𝑥𝑡+1 |1 > 𝑖 | |𝑥𝑡 |1 = 𝑖)
𝑝−
𝑖,𝜆

= Pr ( |𝑥𝑡+1 |1 < 𝑖 | |𝑥𝑡 |1 = 𝑖)
Δ−
𝑖,𝜆

= E (𝑖 − |𝑥𝑡+1 |1 | |𝑥𝑡 |1 = 𝑖 and |𝑥𝑡+1 |1 < 𝑖)

The following probabilities and expectations are tailored to the

Cliff function. This includes probabilities for jumping down the

cliff (𝑝
↓
𝑖,𝜆
), that is, jumping from the first slope to the second slope,

jumping back up the cliff (𝑝
↑
𝑖,𝜆
), that is, jumping from the second

slope to the first slope, increasing the fitness without jumping back

up the cliff (𝑝→
𝑖,𝜆

), and decreasing the fitness without jumping down

the cliff (𝑝←
𝑖,𝜆
).

Definition 2.2. For all 𝜆 ∈ N we define:

𝑝
↓
𝑖,𝜆

=

{
Pr ( |𝑥𝑡+1 |1 > 2𝑛/3 | 2𝑛/3 ≥ |𝑥𝑡 |1 = 𝑖) if 𝑖 ≤ 2𝑛/3
0 otherwise.

𝑝
↑
𝑖,𝜆

=

{
Pr ( |𝑥𝑡+1 |1 ≤ 2𝑛/3 | 2𝑛/3 < |𝑥𝑡 |1 = 𝑖) if 𝑖 > 2𝑛/3
0 otherwise.

𝑝→
𝑖,𝜆

=

{
Pr (𝑖 < |𝑥𝑡+1 |1 ≤ 2𝑛/3 | |𝑥𝑡 |1 = 𝑖) if |𝑥 |

1
≤ 2𝑛/3,

Pr (𝑖 < |𝑥𝑡+1 |1 | |𝑥𝑡 |1 = 𝑖) otherwise.

𝑝←
𝑖,𝜆

=

{
Pr ( |𝑥𝑡+1 |1 < 𝑖 | |𝑥𝑡 |1 = 𝑖) if 𝑖 ≤ 2𝑛/3,
Pr (2𝑛/3 < |𝑥𝑡+1 |1 < 𝑖 | |𝑥𝑡 |1 = 𝑖) otherwise.

Δ←
𝑖,𝜆

=

{
E (𝑖 − |𝑥𝑡+1 |1 | |𝑥𝑡 |1 = 𝑖, |𝑥𝑡+1 |1 < 𝑖) if 𝑖 ≤ 2𝑛/3,
E (𝑖 − |𝑥𝑡+1 |1 | |𝑥𝑡 |1 = 𝑖, 2𝑛/3 < |𝑥𝑡+1 |1 < 𝑖) otherwise.

Finally, for 𝑖 > 2𝑛/3,

Δ
↑
𝑖,𝜆

= E (𝑖 − |𝑥𝑡+1 |1 | 2𝑛/3 < |𝑥𝑡 |1 = 𝑖 and |𝑥𝑡+1 |1 ≤ 2𝑛/3) .

The events underlying the probabilities from Definition 2.2 are

mutually disjoint. They relate to the probabilities defined for One-

Max in [17] as follows:

𝑝+
𝑖,𝜆

= 𝑝→
𝑖,𝜆
+ 𝑝↓

𝑖,𝜆
(1)

𝑝−
𝑖,𝜆

= 𝑝←
𝑖,𝜆
+ 𝑝↑

𝑖,𝜆
(2)

The following lemma collects bounds on the above transition

probabilities that will be used throughout the remainder.

Lemma 2.3. For any (1, 𝜆) EA on Cliff, the quantities from Defi-

nition 2.2 are bounded as follows:

For all 𝑖 ∈ {1, . . . , 𝑛},

𝑝←
𝑖,𝜆
≤ 𝑝−

𝑖,𝜆
≤

(
𝑒 − 1
𝑒

)𝜆
(3)

Δ←
𝑖,𝜆
≤ Δ−

𝑖,𝜆
≤ 𝑒

𝑒 − 1 . (4)

For all 𝑖 ∈ {2𝑛/3, . . . , 𝑛}, letting 𝑑 := 𝑖 − 2𝑛/3,

𝑝
↑
𝑖,𝜆
≤ 𝜆(𝑖/𝑛)𝑑

𝑑!
(5)

Δ
↑
𝑖,𝜆
≤ 𝑑 + 1. (6)

Finally,

𝑝→
𝑖,𝜆
≥


1 −

(
1 − 1

3𝑒

)𝜆
if 𝑖 < 2𝑛/3,

1 −
(
1 − 𝑛−𝑖

𝑒𝑛

)𝜆
− 𝑝↑

𝑖,𝜆
if 𝑖 > 2𝑛/3.

(7)

Proof. The first inequality in (3), 𝑝←
𝑖,𝜆
≤ 𝑝−

𝑖,𝜆
, follows from (1).

The stated upper bound on 𝑝−
𝑖,𝜆

was shown in [17].

We have Δ←
𝑖,𝜆
≤ Δ−

𝑖,𝜆
since for 𝑖 ≤ 2𝑛/3, Δ←

𝑖,𝜆
= Δ−

𝑖,𝜆
by definition

of Δ←
𝑖,𝜆

and otherwise Δ←
𝑖,𝜆

is capped as only target search points

with more than 2𝑛/3 ones are considered. The second inequality

in (4) was shown in [17].
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To bound 𝑝
↑
𝑖,𝜆

, we argue that a necessary requirement for creating

an offspring with at most 2𝑛/3 ones is that 𝑑 one-bits flip. There are( 𝑖
𝑑

)
ways for choosing 𝑑 one-bits and the probability that 𝑑 specific

bits are flipped is (1/𝑛)𝑑 . Thus,

𝑝
↑
𝑖,1
≤

(
𝑖

𝑑

) (
1

𝑛

)𝑑
≤ 𝑖𝑑

𝑑!
·
(
1

𝑛

)𝑑
≤ (𝑖/𝑛)

𝑑

𝑑!
.

Using the union bound over all offspring, we get

𝑝
↑
𝑖,𝜆
≤ 𝜆(𝑖/𝑛)𝑑

𝑑!
.

To bound Δ
↑
𝑖,𝜆

we bound the number of one-bits flipped by the

number of bit-flips during a generation conditional on flipping 𝑑

bits. Let 𝐵 denote the random number of flipping bits in a standard

bit mutation with mutation probability 1/𝑛, then using Lemma 1.7.3

from [7] we get E (𝐵 | 𝐵 ≥ 𝑑) ≤ 𝑑 + E (𝐵) = 𝑑 + 1. Increasing the

offspring population size does not increase Δ
↑
𝑖,𝜆

because if multi-

ple offspring jump up the cliff, the algorithm will transition to an

offspring with a maximum number of ones on the first slope.

To bound 𝑝→
𝑖,𝜆

we argue that, for all 𝑖 < 2𝑛/3, if there is an

offspring with 𝑖 + 1 ones then the number of ones increases. For

|𝑥𝑡 |1 < 2𝑛/3 the probability that an offspring flips only one 0-bit is

𝑝+𝑖,1 ≥
𝑛 − 𝑖
𝑛

(
1 − 1

𝑛

)𝑛−1
≥ 𝑛 − 𝑖

𝑒𝑛
. (8)

The probability that any of the 𝜆 offspring flips only one 0-bit is

1 −
(
1 − 𝑝+𝑖,1

)𝜆
≥ 1 −

(
1 − 𝑛 − 𝑖

𝑒𝑛

)𝜆
≥ 1 −

(
1 − 1

3𝑒

)𝜆
.

This proves the claimed lower bound on 𝑝→
𝑖,𝜆

if |𝑥𝑡 |1 < 2𝑛/3. If
|𝑥𝑡 |1 > 2𝑛/3 then there is an offspring with 𝑖 + 1 ones with proba-

bility

1 −
(
1 − 𝑛 − 𝑖

𝑒𝑛

)𝜆
.

In this case either the number of ones increases or the algorithm

goes back up the cliff. Hence,

𝑝→
𝑖,𝜆
≥ 1 −

(
1 − 𝑛 − 𝑖

𝑒𝑛

)𝜆
− 𝑝↑

𝑖,𝜆
. □

We also give a lower bound for a mutation creating an offspring

from the top of the cliff (that is, a parent with 2𝑛/3 ones) that

increases the number of ones by at least
𝑐 log log𝑛

log log log𝑛
, for an arbitrary

constant 𝑐 > 0.

Lemma 2.4. For every constant 𝑐 > 0 and all 𝑛 ≥ 2
2
2
3𝑐

the proba-

bility that a standard bit mutation of a search point with 2𝑛/3 ones
yields an offspring with at least 2𝑛/3 + 𝑐 log log𝑛

log log log𝑛
ones is at least

(log𝑛)−𝑐 .

Proof. Let 𝜅 :=
𝑐 log log𝑛

log log log𝑛
, then a sufficient condition for the

sought event is that 𝜅 0-bits flip. Since there are

(𝑛/3
𝜅

)
ways to

choose these flipping bits, the probability is at least(
𝑛/3
𝜅

) (
1

𝑛

)𝜅
≥

(
𝑛/3
𝜅

)𝜅 (
1

𝑛

)𝜅
=

(
1

3𝜅

)𝜅
= (3𝜅)−𝜅 .

Plugging in 𝜅, we get

(3𝜅)−𝜅 =

(
3𝑐 log log𝑛

log log log𝑛

)− 𝑐 log log𝑛

log log log𝑛

= 2

− 𝑐 log log𝑛

log log log𝑛
·log

(
3𝑐 log log𝑛

log log log𝑛

)
.

By assumption on 𝑛, we have log log log𝑛 ≥ 3𝑐 , thus
3𝑐 log log𝑛

log log log𝑛
≤

log log𝑛 and we bound the sought probability by

2
− 𝑐 log log𝑛

log log log𝑛
·log log log𝑛

= 2
−𝑐 log log𝑛 = (log𝑛)−𝑐 . □

In the remainder, we sometimes tacitly use the following ar-

gument. If in an iterative process there is an event that happens

independently in each step with probability at most 𝑝 , the proba-

bility that the event happens during a phase of𝑇 steps,𝑇 a random

variable with E (𝑇 ) < ∞, is at most∑
𝑡

Pr (𝑇 = 𝑡) · 𝑡𝑝 = 𝑝 · E (𝑇 ) . (9)

3 STATIC PARAMETER SETTINGS

We first consider the performance of the (1, 𝜆) EA with a static

choice of 𝜆. The main result in this section is the following theorem

that gives upper and lower bounds for the expected optimisation

time of the (1, 𝜆) EA on Cliff.

Theorem 3.1. The expected optimisation time E (𝑇 ) of the

(1, 𝜆) EA with static 𝜆 on Cliff is

E (𝑇 ) = Ω
(
𝜉𝜆

)
if 𝜆 = 𝑂 (𝑛) and

E (𝑇 ) = 𝑂

(
𝜉𝜆 · log𝑛

)
if log 𝑒

𝑒−1
𝑛 ≤ 𝜆 = 𝑂 (log𝑛),

where 𝜉−1 := 1

𝑒

∑∞
𝑎=0

∑∞
𝑏=𝑎+1

(
2

3

)𝑎 (
1

3

)𝑏
1

𝑎!𝑏!
≈ 0.1613715804 and

thus 𝜉 ≈ 6.196878.

The lower bound is exponential in 𝜆 for all 𝜆 = 𝑂 (𝑛). The con-
stant 𝜉−1 roughly represents the probability of increasing the num-

ber of ones in a mutation of a parent at the top of the cliff, i. e. a par-

ent with 2𝑛/3 ones. For 𝜆 ≤ (1− 𝜀) log 𝑒
𝑒−1

𝑛, that is, if the offspring

population size is too small to allow for hill climbing on OneMax,

a much stronger lower bound of 2
𝑐𝑛𝜀/2

, for some constant 𝑐 > 0,

was shown in [33] for all functions with a unique optimum. In the

(arguably more interesting) parameter regime 𝜆 > (1 − 𝜀) log 𝑒
𝑒−1

𝑛

our result improves upon the only other lower bound we are aware

of: [18] showed a lower bound for all 𝜆 of min{𝑛𝑛/4, 𝑒𝜆/4}/3. The
term 𝑒𝜆/4 is roughly 1.284𝜆 and hence considerably lower than our

lower bound of 6.196𝜆 . In this parameter regime our lower bound

is nearly tight: for the best known values of 𝜆 for OneMax [33], the

upper bounds only differ from the lower bound by a logarithmic

factor.

To prove Theorem 3.1, we first show that, for all search points

with at most 3𝑛/4 ones, improvements are found easily if 𝜆 ≥
log 𝑒

𝑒−1
𝑛. Note that the considered set of search points includes

search points on the first slope as well as search points on the

second slope at a linear distance past the top of the cliff. We will see

that, once a search point with at least 3𝑛/4 ones has been reached,

the algorithm will not jump back up the cliff, with high probability.

The choice of the constant 3/4 is somewhat arbitrary; we could

have chosen any other constant in (2/3, 1).
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Lemma 3.2. Consider the (1, 𝜆) EA with log 𝑒
𝑒−1

𝑛 ≤ 𝜆 = 𝑂 (log𝑛)
and a current search point 𝑥𝑡 with |𝑥𝑡 |1 ≤ 3𝑛/4. Then the following

statements hold.

(1) The probability of creating an offspring with |𝑥𝑡 |1 + 1 ones is
at least 1 − 𝑛−0.2.

(2) For all 𝑥𝑡 with |𝑥𝑡 |1 ∈ [0, 3𝑛/4] \ [2𝑛/3, 2𝑛/3+ log𝑛], the drift
in the number of ones is E ( |𝑥𝑡+1 |1 − |𝑥𝑡 |1 | 𝑥𝑡 ) ≥ 1 − 𝑜 (1).

(3) For every 𝜅 ∈ [0, 𝑛/12], the expected time until a search point

with exactly 2𝑛/3 ones or at least 2𝑛/3 + 𝜅 ones is reached is

𝑂 (𝑛).

Proof. The probability that one fixed offspring has more than

|𝑥 |
1
ones is at least (𝑛/4)/(𝑒𝑛) = 1/(4𝑒). The probability that there

is an offspring that increases the number of ones is at least

1 −
(
1 − 1

4𝑒

)
log 𝑒

𝑒−1
𝑛

≥ 1 −
(

4𝑒

4𝑒 − 1

)− log 4𝑒
4𝑒−1
(𝑛)/log 4𝑒

4𝑒−1
( 𝑒
𝑒−1 )

= 1 − 𝑛
−1/log 4𝑒

4𝑒−1
( 𝑒
𝑒−1 ) ≥ 1 − 𝑛−0.2 .

For the second statement, let 𝐴+1 denote the event from the first

statement, that is, creating an offspring with |𝑥𝑡 |1 + 1 ones and let

𝐴↑ be the event that |𝑥𝑡 |1 > 2𝑛/3 and |𝑥𝑡+1 |1 ≤ 2𝑛/3. By the law

of total probability, abbreviating Δ := ( |𝑥𝑡+1 |1 − |𝑥𝑡 |1 | 𝑥𝑡 ),

E (Δ) = E

(
Δ | 𝐴+1, 𝐴↑

)
· Pr

(
𝐴+1, 𝐴↑

)
+ E

(
Δ | 𝐴+1, 𝐴↑

)
· Pr

(
𝐴+1, 𝐴↑

)
+ E

(
Δ | 𝐴↑

)
· Pr

(
𝐴↑

)
.

The first line is at least 1·
(
1 − Pr

(
𝐴+1

)
− Pr

(
𝐴↑

))
≥ 1−𝑛−0.2−𝑝↑

𝑖,𝜆

by the first statement and a union bound. The second line is at least

−(log(𝑛)+𝑛−𝜔 (1) ·𝑛)𝑛−0.2 = −𝑜 (1), since the probability of flipping
at least log𝑛 bits is𝑛−𝜔 (1) , also under conditions𝐴+1, 𝐴↑, and using
the trivial bound 𝑛 if this happens nevertheless. The third line is at

least −Δ↑
𝑖,𝜆
𝑝
↑
𝑖,𝜆
. Plugging this together, we get

E (Δ) ≥ 1 − 𝑛−0.2 − 𝑝↑
𝑖,𝜆
− 𝑜 (1) − Δ↑

𝑖,𝜆
𝑝
↑
𝑖,𝜆

= 1 − 𝑛−0.2 − (Δ↑
𝑖,𝜆
+ 1)𝑝↑

𝑖,𝜆
− 𝑜 (1) .

For |𝑥𝑡 |1 < 2𝑛/3, 𝑝↑
𝑖,𝜆

= 0 and the claim follows. For |𝑥𝑡 |1 > 2𝑛/3 +
log𝑛, by Lemma 2.3 with 𝑑 ≥ log𝑛,

(Δ↑
𝑖,𝜆
+ 1)𝑝↑

𝑖,𝜆
≤ 𝜆(𝑑 + 2)

𝑑!
≤ 𝜆(log(𝑛) + 2)

(log𝑛)! = 𝑛−𝜔 (1) .

This implies the second statement.

For the third statement, we first note that the second statement

also holds for the drift on the function OneMax, for all 𝑥𝑡 with

|𝑥𝑡 |1 ≤ 3𝑛/4, as the negative terms involving 𝑝
↑
𝑖,𝜆

disappear. Let

us first consider the case that the current search point has at most

2𝑛/3 ones. Then, by the additive drift theorem [15], the expected

time until a search point with at least 2𝑛/3 ones is reached is 𝑂 (𝑛).
Note that is it possible (though unlikely) that the top of the cliff

is skipped and the algorithm jumps down the cliff from a search

point with at most 2𝑛/3 − 1 ones. By the first statement of this

lemma, the conditional probability of this happening, conditional on

increasing the number of ones, is𝑂 (𝑛−0.2). If it happens regardless,
we consider the following case of having more than 2𝑛/3 ones.

If the current search point has more than 2𝑛/3 ones, we argue
that on OneMax, by the same drift arguments as above, the ex-

pected time to reach a search point with at least 2𝑛/3 + 𝜅 ones is

𝑂 (𝜅) = 𝑂 (𝑛). We only see a difference to OneMax if the algorithm

jumps back up the cliff. Then we are left with a search point of at

most 2𝑛/3 ones and we apply the above arguments.

If 𝑇 (𝑛) denotes the worst-case time with respect to the initial

number of ones 𝑖 < 2𝑛/3 + 𝜅, we have shown the recurrence:

𝑇 (𝑛) ≤ 𝑂 (𝑛)+𝑂 (𝑛−0.2) ·𝑇 (𝑛). It is easy to see that𝑇 (𝑛) = 𝑂 (𝑛). □

Another important step for proving Theorem 3.1 is estimating

the probability of a standard bit mutation of a parent at the top of

the cliff increasing the number of ones, 𝑝+
2𝑛/3,1. This is because in

order to jump down the cliff, all offspring must increase the number

of ones, which has a probability of (𝑝+
2𝑛/3,1)

𝜆
. To prove the claimed

upper and lower bounds in Theorem 3.1 we need precise estimations

of 𝑝+
2𝑛/3,1 as it appears in the base of an expression exponential

in 𝜆; the commonly used inequalities
𝑛−2𝑛/3

𝑒𝑛 ≤ 𝑝+
2𝑛/3,1 ≤

𝑛−2𝑛/3
𝑛

(that is,
1

3𝑒 ≤ 𝑝+
2𝑛/3,1 ≤

1

3
) are too loose. The following lemma gives

precise upper and lower bounds on 𝑝+
𝑖,1

for almost all values of 𝑖 as

this generality is achieved quite easily and the lemma may be of

independent interest. The proof is omitted due to space restrictions.

Lemma 3.3. For all 𝑖 ∈ {0, . . . , 𝑛 − 1},

𝑝+𝑖,1 ≤
(
1 − 1

𝑛

)𝑛−2 ∞∑
𝑎=0

∞∑
𝑏=𝑎+1

(
𝑖

𝑛

)𝑎 (
𝑛 − 𝑖
𝑛

)𝑏
1

𝑎!𝑏!
. (10)

For all 𝑖 ∈ {⌈log𝑛⌉, . . . , 𝑛 − ⌈log𝑛⌉},

𝑝+𝑖,1 ≥
(
1 − 1

𝑛

)𝑛−2 ∞∑
𝑎=0

∞∑
𝑏=𝑎+1

(
𝑖

𝑛

)𝑎 (
𝑛 − 𝑖
𝑛

)𝑏
1

𝑎!𝑏!(
1 − 2 log

2 𝑛

min{𝑖, 𝑛 − 𝑖}

)
. (11)

For the specific value 𝑖 = 2𝑛/3, we obtain the following special

case. Along with
1

𝑒 ≤
(
1 − 1

𝑛

)𝑛−2
≤ 1

𝑒 · (1 +𝑂 (1/𝑛)), Equations (10)
and (11) in Lemma 2.3 imply the following.

Corollary 3.4.

𝑝+
2𝑛/3,1 =

1

𝑒

∞∑
𝑎=0

∞∑
𝑏=𝑎+1

(
2

3

)𝑎 (
1

3

)𝑏
1

𝑎!𝑏!
±𝑂

(
log

2 𝑛

𝑛

)
which is approximately 0.1613715804 ±𝑂 (log2 (𝑛)/𝑛).

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Chernoff bounds, with probability

1 − 𝑒−Ω (𝑛) , the initial search point has at most 2𝑛/3 ones. In the

following, we assume that in the first Θ(𝜉𝜆) expected generations,

no mutation ever flips at least 𝑛/3 bits. The probability of flipping

at least 𝑛/3 bits in one mutation is at most 1/((𝑛/3)!) = 𝑛−Ω (𝑛) and
a union bound over 𝜆 offspring and Θ(𝜉𝜆) expected generations

(cf.(9)) still yields a probability of 𝑛−Ω (𝑛) .
Under this assumption, a necessary condition for finding the

optimum is that a transition from a search point with at most
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2𝑛/3 ones to a search point with more than 2𝑛/3 ones is made

(i.e. a jump down the cliff). By Lemma 1 in [35], the probability

of this event is maximised if the parent has exactly 2𝑛/3 ones;

then it is (𝑝+
2𝑛/3,1)

𝜆
. By Equation (10) in Lemma 2.3, along with

(1 − 1/𝑛)𝑛−2 ≤ 1/𝑒 · (1 − 1/𝑛)−2 ≤ 1/𝑒 · (1 + 2/𝑛),

(𝑝+
2𝑛/3,1)

𝜆 ≤
(
𝜉−1

(
1 + 2

𝑛

))𝜆
≤ 𝜉−𝜆 · 𝑒2𝜆/𝑛 = 𝑂 (𝜉−𝜆) .

The expected waiting time for this transition to happen is at least

Ω(𝜉𝜆). This establishes a lower bound of (1 − 𝑒−Ω (𝑛) − 𝑛−Ω (𝑛) ) ·
Ω(𝜉𝜆) = Ω(𝜉𝜆).

Now we show the upper bound. We consider the time 𝑇𝜅 until a

search point with at least 2𝑛/3+𝜅 ones is found, for 𝜅 :=
2 log log𝑛

log log log𝑛
,

assuming that the current search point is at the top of the cliff, that

is, the current search point has 2𝑛/3 ones.
The expected time to return to the top of the cliff, or to find a

search point with at least 2𝑛/3 + 𝜅 ones, is bounded by 𝑂 (𝑛) by
Lemma 3.2.

Let 𝑝− denote the probability of accepting a search point with

less than 2𝑛/3 ones from the top of the cliff and let 𝑝+ = (𝑝+
2𝑛/3,1)

𝜆

denote the probability of accepting a search point with more than

2𝑛/3 ones from the top of the cliff.

By Lemma 2.4 with 𝑐 := 2, the probability of creating an off-

spring at distance at least 𝜅 :=
2 log log𝑛

log log log𝑛
from the cliff is at least

1/log2 𝑛. This clearly also holds under the condition of the event

underlying 𝑝+, that is, that all offspring have more than 2𝑛/3 ones.
The probability that there is one such offspring is at least

1 −
(
1 − 1

log
2 𝑛

)𝜆
≥ 𝜆/log2 𝑛

1 + 𝜆/log2 𝑛
≥ 𝜆

2 log
2 𝑛
≥ 1

4 log𝑛
,

where the first inequality follows from Lemma 10 in [2] and the

last inequality follows from 𝜆 ≥ log 𝑒
𝑒−1

𝑛 ≥ 1

2
log

2
𝑛.

Together, we have established a recurrence for E (𝑇𝜅 ):
E (𝑇𝜅 ) ≤ 1 + 𝑝− (𝑂 (𝑛) + E (𝑇𝜅 ))

+ 𝑝+
(
𝑂 (𝑛) +

(
1 − 1

4 log𝑛

)
E (𝑇𝜅 )

)
+ (1 − 𝑝+ − 𝑝−)E (𝑇𝜅 ) .

This is equivalent to

𝑝+

4 log𝑛
· E (𝑇𝜅 ) ≤ 1 + 𝑝−𝑂 (𝑛) + 𝑝+𝑂 (𝑛). (12)

We argue that, at the top of the cliff, the probability of moving to a

search point with a different number of ones is 𝑝− + 𝑝+ = 𝑂 (1/𝑛).
This is because if there is a mutation that does not flip any bits,

the next search point will be at the top of the cliff again. Hence, in

order to move to a search point with a different number of ones, all

offspring must flip at least one bit. The probability of this event is

at most, using (1− 1/𝑛)𝑛 = (1− 1/𝑛) · (1− 1/𝑛)𝑛−1 ≥ 1/𝑒 − 1/(𝑒𝑛),

𝑝− + 𝑝+ ≤
(
1 −

(
1 − 1

𝑛

)𝑛)𝜆
≤

(
1 − 1

𝑒
+ 1

𝑒𝑛

)𝜆
=

(
1 − 1

𝑒

)𝜆 (
1 + 1

(𝑒 − 1)𝑛

)𝜆
=

(
𝑒 − 1
𝑒

)
log 𝑒

𝑒−1
𝑛 (

1 + 1

(𝑒 − 1)𝑛

)𝜆

≤ 1

𝑛
· 𝑒𝜆/( (𝑒−1)𝑛) = 𝑂 (1/𝑛)

using 𝜆 = 𝑂 (𝑛) in the last step. Plugging this in to (12) and multi-

plying both sides by 4 log(𝑛)/𝑝+, we get

E (𝑇𝜅 ) ≤ 𝑂

(
log𝑛

𝑝+

)
.

Now assume that a search point with 2𝑛/3 + 𝑑 ones has been

reached, where 𝜅 ≤ 𝑑 ≤ log𝑛. By Lemma 3.2 and Lemma 2.3, the

probability that in one generation the number of ones is increased

(i.e. the algorithm does not jump up the cliff again) is at least

1 − 𝑛−0.2 − 𝜆(3/4)𝑑
𝑑!

.

By a union bound, the probability that this happens for all 𝑑 =

𝜅 . . . 𝑛0.1 is at least

1 − 𝑛0.1

𝑛0.2
− 𝜆

𝑛0.1∑
𝑑=𝜅

(3/4)𝑑
𝑑!

.

The sum is bounded from above, using 𝑑! ≥ (𝑑/𝑒)𝑒 , as
𝑛0.1∑
𝑑=𝜅

(3/4)𝑑
𝑑!

≤
𝑛0.1∑
𝑑=𝜅

(
3𝑒

4𝑑

)𝑑
≤
∞∑
𝑑=𝜅

(
3𝑒

4𝜅

)𝑑
=

(
3𝑒

4𝜅

)𝜅
·
∞∑
𝑑=0

(
3𝑒

4𝜅

)𝑑
=

(
3𝑒

4𝜅

)𝜅
· 1

1 − 3𝑒
4𝜅

≤ 2

(
3𝑒

4𝜅

)𝜅
.

Plugging in 𝜅, we get

2

(
3𝑒 log log log𝑛

4 log log𝑛

) 2 log log𝑛

log log log𝑛

≤ 2 · 2
2 log log𝑛

log log log𝑛
·log

(
3𝑒 log log log𝑛

4 log log𝑛

)

= 2 · 2−
2 log log𝑛

log log log𝑛
·log

(
4 log log𝑛

3𝑒 log log log𝑛

)
.

For large enough 𝑛, we have

4 log log𝑛

3𝑒 log log log𝑛
≥ 2(log log𝑛)1/2

and then

log

(
4 log log𝑛

3𝑒 log log log𝑛

)
≤ 1 + 1

2

log log log𝑛.

Plugging this in, we bound the sum by

2 · 2−
2 log log𝑛

log log log𝑛
·(1+ 1

2
log log log𝑛) ≤ 2 · 2− log log𝑛−

2 log log𝑛

log log log𝑛 = 𝑜

(
1

log𝑛

)
.

Thus, the probability of reaching a search point with at least 2𝑛/3+
𝑛0.1 ones before going back up the cliff is at least

1 − 𝑛0.1

𝑛0.2
− 𝜆

log𝑛∑
𝑑=𝜅

(3/4)𝑑
𝑑!

≥ 1 − 𝑜 (1) .

From that point on, for any search point with at least 2𝑛/3 + 𝑛0.1/2
ones, we can use arguments from the analysis of the (1, 𝜆) EA on

OneMax in [33] since the (1, 𝜆) EA must flip at least 𝑛0.1/2 bits to
return to the cliff, and this has exponentially small probability. It is

not difficult to show using the negative drift theorem [27, 28] and

the second statement of Lemma 3.2, that, once we have reached
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a distance of at least 𝑛0.1 from the cliff, reducing that distance to

at most 𝑛0.1/2 has an exponentially small probability. Assuming

we never go back up the cliff, the remaining expected optimisation

time is 𝑂 (𝑛 log𝑛) [33].
In total, the expected optimisation time is

𝑂 (1) · E (𝑇𝜅 ) = 𝑂

(
log𝑛

𝑝+

)
= 𝑂

(
log𝑛

(𝑝+
2𝑛/3,1)

𝜆

)
.

This implies the claim since 𝑝+
2𝑛/3,1 = 𝜉−1−𝑂 ((log2 𝑛)/𝑛) by Corol-

lary 3.4 and(
𝑝+
2𝑛/3,1

)𝜆
=

(
𝜉−1 − 𝑂 (log2 𝑛)

𝑛

)𝜆
= 𝜉−𝜆

(
1 − 𝑂 (log2 𝑛)

𝑛

)𝜆
≥ 𝜉−𝜆

(
1 − 𝑂 (𝜆 log2 𝑛)

𝑛

)
= Ω(𝜉−𝜆). □

Along with the exponential lower bound from [33] for small 𝜆-

values, Theorem 3.1 shows that the expected optimisation time for

any 𝜆 grows faster than any polynomial with degree less than 𝜂 ≈
3.976770136.

Theorem 3.5. Let 𝜂 := 1/log𝜉
(

𝑒
𝑒−1

)
≈ 3.976770136. The expected

optimisation time of the (1, 𝜆) EA with static 𝜆 is 𝜔 (𝑛𝜂−𝜀 ) for every
constant 𝜀 > 0 and every 𝜆 and 𝑂 (𝑛𝜂 log𝑛) for 𝜆 = ⌈log 𝑒

𝑒−1
𝑛⌉.

Proof. By Theorem 3.1, the expected optimisation time for 𝜆 =

⌈log 𝑒
𝑒−1

𝑛⌉ is 𝑂 (𝜉𝜆 log𝑛). Using

𝜉𝜆 ≥ 𝜉
log 𝑒

𝑒−1
𝑛
= 𝜉

log𝜉 (𝑛)/log𝜉 ( 𝑒
𝑒−1 ) = 𝑛

1/log𝜉 ( 𝑒
𝑒−1 ) = 𝑛𝜂

this establishes the claimed upper bound.

For the lower bound, we exploit that for every constant 𝜀 ′ > 0,

for all 𝜆 ≤ (1 − 𝜀 ′) log 𝑒
𝑒−1

𝑛 the expected optimisation time of the

(1, 𝜆) EA on every function with a unique optimum is at least 2
𝑐𝑛𝜀
′/2
,

for some constant 𝑐 > 0, by Theorem 10 in [33]. This is clearly

in 𝜔 (𝑛𝜂 ). For 𝜆 = 𝜔 (𝑛) the lower bound min{𝑛𝑛/4, 𝑒𝜆/4}/3 from

Theorem 8 in [18] is exponential. It thus suffices to consider 𝜆 > (1−
𝜀 ′) log 𝑒

𝑒−1
𝑛 and 𝜆 = 𝑂 (𝑛). The lower bound from Theorem 3.1 then

becomes Ω(𝜉 (1−𝜀
′) log 𝑒

𝑒−1
𝑛) = Ω(𝑛 (1−𝜀′)𝜂 ). Choosing 𝜀 ′ := 𝜀/(2𝜂),

this is Ω(𝑛𝜂−𝜀/2) = 𝜔 (𝑛𝜂−𝜀 ) as claimed. □

4 SELF-ADJUSTING OFFSPRING

POPULATIONS ARE EFFICIENT ON CLIFF

In this section we show that the self-adjusting (1, 𝜆) EA is faster

than the (1, 𝜆) EA with static parameter choice by a polynomial fac-

tor of Θ(𝑛2.9767/log𝑛), achieving the best possible asymptotic run-

time for any unary unbiased black-box algorithm of𝑂 (𝑛 log𝑛) [21].
The main result of this section is shown in Theorem 4.1.

Theorem 4.1. Let the update strength 𝐹 > 1 and the success rate

0 < 𝑠 < 𝑒−1
𝑒 be constants and 𝑒𝑛𝐹 1/𝑠 ≤ 𝜆max = poly (𝑛). Then for

any initial search point and any initial 𝜆0 ≤ 𝜆max the self-adjusting

(1, 𝜆) EA resetting 𝜆 optimises Cliff in 𝑂 (𝑛) expected generations

and 𝑂 (𝜆max log𝑛) expected function evaluations.

For 𝜆max = ⌈𝑒𝑛𝐹 1/𝑠 ⌉ we get𝑂 (𝑛 log𝑛) evaluations in expectation.

The proof of our result is divided in four phases: reaching the cliff,

jumping down the cliff, climbing away from the cliff and finding

the global optimum.

4.1 Reaching the cliff

We note that the algorithm studied here is the same as the algorithm

studied in [17] as long as all generations that use 𝜆 = 𝜆max are suc-

cessful. Here we show that before reaching the cliff the probability

of an unsuccessful generation with 𝜆 = 𝜆max is sufficiently small

to not affect the optimisation. Additionally, the results from [17]

on OneMax can be applied when only considering improvements

that increase the fitness by 1. Hence, they can be translated to the

Cliff function to calculate the time the algorithm takes to reach

the cliff, giving the following bounds.

Lemma 4.2 (Adapted from Theorem 3.5 in [17]). Consider the

self-adjusting (1, 𝜆) EA as in Theorem 4.1. For every initial offspring

population size 𝜆0 ≤ 𝜆max and every initial search point 𝑥0 with

|𝑥0 |1 = 2𝑛/3 − 𝑎 for 𝑎 ≥ 1 the algorithm evaluates a solution 𝑥𝑡
with |𝑥𝑡 |1 ≥ 2𝑛/3 using in expectation 𝑂 (𝑎 + log𝑛) generations and
𝑂 (𝑎 + log𝑛 + 𝜆0) evaluations.

We translate the results from [17] on OneMax to the first slope

of Cliff, therefore, before giving a proof for Lemma 4.2 we first

show that w.o.p the self-adjusting (1, 𝜆) EA does not reset 𝜆 in

this region and consequently it behaves as the algorithm studied

in [17]. By (9) this holds for any random time period of polynomial

expected length. The following lemma concerns a larger region of

search points with up to 3𝑛/4 ones as this will be useful later on.
Lemma 4.3. Consider the self-adjusting (1, 𝜆) EA as in Theorem 4.1.

The probability that in a generation 𝑡 with |𝑥𝑡 |1 ≤ 3𝑛/4 and |𝑥𝑡 |1 ≠
2𝑛/3 the self-adjusting (1, 𝜆) EA resets 𝜆 is at most 𝑒−Ω (𝑛) .

Proof. In order to reset 𝜆 a generation using 𝜆 = 𝜆max must

not increase the fitness. By Lemma 2.3 with 𝜆 = 𝜆max ≥ 𝑒𝑛𝐹 1/𝑠 the
probability of this event is at most

1 − 𝑝→
𝜆max

≤
(
1 − 1

3𝑒

)𝑒𝑛𝐹 1/𝑠

≤ exp

(
−𝑛𝐹

1/𝑠

3

)
= 𝑒−Ω (𝑛) . □

We now show the relevant definitions and lemmas adapted

from [17] including the necessary modifications to their proofs

to translate them to Cliff.

Definition 4.4. We define the potential function 𝑔(𝑋𝑡 ) as in [17]:

𝑔(𝑋𝑡 ) = |𝑥𝑡 |1 −
𝑠𝑒

𝑒 − 1 log𝐹

(
max

(
𝑒𝑛𝐹 1/𝑠

𝜆𝑡
, 1

))
.

Using Definition 4.4 we can see that given that 𝜆max ≥ 𝑒𝑛𝐹 1/𝑠

the drift of the potential does not change as long as 𝜆 does not reset

to 1. Hence the following lemma still holds.

Lemma 4.5 (Adapted from Lemma 3.4 in [17]). Consider the

self-adjusting (1, 𝜆) EA resetting 𝜆 as in Theorem 4.1 and assume

that the event stated in Lemma 4.3 does not occur. Then for every

generation 𝑡 with |𝑥𝑡 |1 < 2𝑛/3,

E (𝑔(𝑋𝑡+1) − 𝑔(𝑋𝑡 ) | 𝑋𝑡 ) ≥
1

𝑒
− 𝑠

𝑒 − 1 > 0

for large enough 𝑛.



Self-Adjusting Offspring Population Sizes Outperform Fixed Parameters on the Cliff Function FOGA ’21, September 6–8, 2021, Virtual Event, Austria

Again, as long as 𝜆 does not reset, the following lemma taken

from [17] that describes the expected value of 𝜆 holds.

Lemma 4.6 (Lemma 3.13 in [17]). Consider the self-adjusting

(1, 𝜆) EA as in Theorem 4.1 and assume that the event stated in

Lemma 4.3 does not occur. If the best-so-far fitness at time 𝑡 is at

most 𝑖 then

E (𝜆𝑡 | 𝜆0) ≤ ⌊𝜆0/𝐹 𝑡 ⌋ +
𝑒𝑛

𝑛 − 𝑖 ·
(
𝐹 1/𝑠 + 𝐹 1/𝑠

ln 𝐹

)
.

For completeness we state the following lemma taken from [17].

Lemma 4.7 (Lemma 3.3 in [17]). For all generations 𝑡 , |𝑥 |
1
and the

potential are related as: |𝑥 |
1
− 𝑠𝑒

𝑒−1 log𝐹 (𝑒𝑛𝐹
1/𝑠 ) ≤ 𝑔(𝑋𝑡 ) ≤ |𝑥 |1.

With the previous lemmas we can now prove Lemma 4.2.

Proof of Lemma 4.2. Following the arguments of the proof of

Theorem 3.5 in [17] to bound the number of generations to reach

|𝑥𝑡 |1 ≥ 2𝑛/3 we use the potential function 𝑔(𝑋𝑡 ). To fit the perspec-
tive of the additive drift theorem [15] we switch to the potential

function 𝑔(𝑋𝑡 ) := max(2𝑛/3 − 𝑔(𝑋𝑡 ), 0) and stop when 𝑔(𝑋𝑡 ) = 0

(which implies that |𝑥𝑡 |1 is least 2𝑛/3) or |𝑥𝑡 |1 of at least 2𝑛/3 is
reached beforehand. Note that the maximum caps the effect of

generations that jump down the cliff. Lemma 4.5 shows that the

potential 𝑔(𝑋𝑡 ) has a positive constant drift whenever |𝑥𝑡 |1 < 2𝑛/3,
and given that the drift bound for 𝑔(𝑋𝑡 ) still holds when only con-

sidering fitness improvements by 1 it also holds for 𝑔(𝑋𝑡 ).
The initial value 𝑔(𝑋0) is at most 𝑎 + 𝑠𝑒

𝑒−1 log𝐹
(
𝑒𝑛𝐹 1/𝑠

)
by

Lemma 4.7. Using Lemma 4.5 and the additive drift theorem [15],

the expected number of generations is

E (𝑇1) ≤
𝑎 + 𝑠𝑒

𝑒−1 log𝐹
(
𝑒𝑛𝐹 1/𝑠

)
1

𝑒 −
𝑠

𝑒−1
= 𝑂 (𝑎 + log𝑛).

The expected number of function evaluations during this time

is E

(
𝜆0 + 𝜆1 + · · · + 𝜆𝑇1−1

)
= E

(∑𝑇1−1
𝑡=0

𝜆𝑡 | 𝜆0
)
. We bound all sum-

mands by Lemma 4.6, applied with a worst case fitness of 𝑖 := 2𝑛/3.
This yields a random variable 𝜆∗ with

E

(
𝜆∗

)
≤ 𝑒𝑛

𝑛/3 ·
(
𝐹 1/𝑠 + 𝐹 1/𝑠

ln 𝐹

)
= 𝑒/3 ·

(
𝐹 1/𝑠 + 𝐹 1/𝑠

ln 𝐹

)
and E (𝜆∗) ≥ E (𝜆𝑡 | 𝜆0) − ⌊𝜆0/𝐹 𝑡 ⌋ for all 𝑡 < 𝑇1. Thus, the expected

time can be bounded by 𝑇1 i.i.d. variables 𝜆
∗
and

∑∞
𝑡=0 ⌊𝜆0/𝐹 𝑡 ⌋ ≤

𝐹𝜆0
𝐹−1 = 𝑂 (𝜆0). Since 𝑇1 is itself a random variable, we apply Wald’s

equation [34] to conclude that

𝑂 (𝜆0) + E
(
𝑇1−1∑
𝑡=0

𝜆∗
)
= 𝑂 (𝜆0) + E (𝑇1) · E

(
𝜆∗

)
= 𝑂 (𝑎 + log𝑛 + 𝜆0).

Finally, if the failure from Lemma 4.3 occurs we restart the anal-

ysis with a worst-case value of 𝑛 for 𝑎. Since the failure has an

exponentially small probability, this does not affect the claimed

expectations. □

4.2 Jumping down the cliff

After reaching the cliff, the algorithm needs to jump down the cliff.

This requires a generation in which all offspring lie on the second

slope. We have seen in Section 3 that this probability is exponen-

tially small in 𝜆𝑡 . The resetting mechanism implies that when 𝜆

reaches its maximum value 𝜆max and the following generation is

unsuccessful, we reach small values of 𝜆𝑡 and jumps down the cliff

become likely.

We also know from Section 3 that we need a sufficiently large

jump to prevent the algorithm from jumping straight back up the

cliff. This probability decreases with the distance to the cliff (that is,

|𝑥𝑡 |1 − 2𝑛/3) and it increases with 𝜆𝑡 as many offspring can amplify

the probability of a jump back up the cliff. The following definition

captures states from which the probability of jumping up the cliff

is sufficiently small.

Definition 4.8. Given some even value 𝜅 ∈ N, a state (𝑥𝑡 , 𝜆𝑡 ) is
called 𝜅-safe if |𝑥𝑡 |1 ≥ 2𝑛/3 + 𝜅 and 𝜆𝑡 ≤ 2

−𝜅/2 · (𝜅/2)!.
Note that 2

−𝜅/2 · (𝜅/2)! is non-decreasing in 𝜅.
In this subsection we give upper bounds on the expected number

of generations and the expected number of function evaluations to

reach a 𝜅-safe state for the specific value 𝜅 :=
log log𝑛

log log log𝑛
. We also

consider search points with at least 3𝑛/4 ones as safe, regardless of
the value of 𝜆𝑡 ; reaching such a search point will be the goal of the

following phase.

Lemma 4.9. Consider the self-adjusting (1, 𝜆) EA with resetting 𝜆

as in Theorem 4.1. Let 𝜅 :=
log log𝑛

log log log𝑛
. For every initial 𝜆0 ≤ 𝜆max

and every initial search point 𝑥0 with |𝑥0 |1 ≥ 2𝑛/3 the algorithm

reaches a 𝜅-safe state, or a search point with at least 3𝑛/4 ones, in
𝑂 (log(𝜆max) log𝑛) expected generations and𝑂 (𝜆max log𝑛) expected
evaluations.

The main idea of the proof of Lemma 4.9 is that, once the al-

gorithm reaches a local optimum with 2𝑛/3 ones, 𝜆 will increase

until it resets to 1 and this is repeated until the algorithm leaves

its local optimum. Every time 𝜆 = 1 the algorithm will accept any

offspring, then we can wait until a lucky mutation step can directly

jump to a search point with at least 2𝑛/3 + log log𝑛

log log log𝑛
ones. Finally,

we account for the time that the algorithm takes to reset 𝜆 to 1,

including the time spent outside of local optima in states that are

not safe.

One such set of non-safe states is that of states with at least 2𝑛/3+
𝜅 ones but violating the upper bound for 𝜆𝑡 from Definition 4.8. For

these states we cannot exclude that the algorithm will return to

the first slope before it reaches a safe state, but we can bound the

time the algorithm spends before either event happens and later

on account for this time. This is done in the following lemma.

Lemma 4.10. Consider the self-adjusting (1, 𝜆) EA with resetting 𝜆

as in Theorem 4.1. Let 𝜅 :=
log log𝑛

log log log𝑛
. From any state (𝑥0, 𝜆0)

with |𝑥0 |1 ≥ 2𝑛/3 + 𝜅 in expectation the algorithm needs at most

𝑂 (log 𝜆max) generations and 𝑂 (𝜆max) evaluations to reach a 𝜅-safe

state, to return to the first slope or to find a search point 𝑥𝑡 with

|𝑥𝑡 |1 ≥ 3𝑛/4.
The proof of Lemma 4.10 is omitted due to space limitations. The

main proof idea is to show that with a large value of 𝜆, with high
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probability all generations are successful and 𝜆 is quickly reduced

to a safe value, unless any of the other two events happens.

With Lemma 4.10 we are able to prove Lemma 4.9.

Proof of Lemma 4.9. We define a cycle as a sequence of gen-

erations that begins after 𝜆 is reset to 1 and |𝑥𝑡 |1 = 2𝑛/3. Since
|𝑥0 |1 ≥ 2𝑛/3 and there is no assumption on 𝜆0 we need to take

into a account the time taken to start the first cycle; this will be

accounted later on.

By Lemma 2.4 with 𝑐 := 1 in the first generation of every cycle

(with 𝜆 = 1) there is a probability of at least 1/log𝑛 to create and

accept an offspring with at least 2𝑛/3 + log log𝑛

log log log𝑛
ones. The next

generation will have 𝜆 = 𝐹 1/𝑠 , which for a sufficiently large 𝑛

satisfies 𝜆 ≤ 2
−𝜅/2 · (𝜅/2)!. Hence, in expected log𝑛 cycles the

sought event will happen. Now it remains to bound the expected

number of generations and evaluations in each cycle.

If during a cycle all generations maintain the current fitness

value, after 𝑗 generations the offspring population size is 𝐹 𝑗/𝑠
. For

𝑗 :=
⌈
𝑠 log𝐹 𝜆max

⌉
, we get an offspring population size of

𝐹 ⌈𝑠 log𝐹 𝜆max⌉/𝑠 ≥ 𝐹 log𝐹 𝜆max = 𝜆max .

Therefore, the number of generations needed to reset 𝜆 is at most⌈
𝑠 log𝐹 𝜆max

⌉
+ 1. Using ⌈𝐹 𝑗/𝑠 ⌉ ≤ 2𝐹 𝑗/𝑠

, during these generations,

the number of evaluations is at most

⌈𝑠 log𝐹 𝜆max⌉∑
𝑗=0

⌈
𝐹 𝑗/𝑠

⌉
≤ 2

⌈𝑠 log𝐹 𝜆max⌉∑
𝑗=0

(
𝐹 1/𝑠

) 𝑗
= 2 · (𝐹

1/𝑠 ) ⌈𝑠 log𝐹 (𝜆max) ⌉+1 − 1
𝐹 1/𝑠 − 1

≤ 2 · (𝐹
1/𝑠 )𝑠 log𝐹 (𝜆max)+2

𝐹 1/𝑠 − 1

=
2𝐹 2/𝑠

𝐹 1/𝑠 − 1
· 𝜆max = 𝑂 (𝜆max).

We now show that when the algorithm is in a local optimum,

with constant probability all following generations will maintain

the current fitness value until 𝜆 is reset to 1. When |𝑥𝑡 |1 = 2𝑛/3,
in order for a generation to maintain the number of one-bits, it

is sufficient to create at least one copy of the parent. Hence, the

probability of the event is at least

1 −
(
1 −

(
1 − 1

𝑛

)𝑛)𝜆
≥

𝜆

(
1 − 1

𝑛

)𝑛
1 + 𝜆

(
1 − 1

𝑛

)𝑛 =
1

1 + 1

𝜆(1− 1

𝑛 )
𝑛

≥ 1

exp

(
1

𝜆(1− 1

𝑛 )
𝑛

) = exp

©­­«−
1

𝜆

(
1 − 1

𝑛

)𝑛 ª®®¬.
The probability that a cycle is comprised only of generations that

maintain the fitness value is at least

⌈𝑠 log𝐹 𝜆max⌉∏
𝑗=0

exp

©­­«−
1

𝐹 𝑗
(
1 − 1

𝑛

)𝑛 ª®®¬ ≥
∞∏
𝑗=0

exp

©­­«−
1

𝐹 𝑗
(
1 − 1

𝑛

)𝑛 ª®®¬

= exp

©­­«−
1(

1 − 1

𝑛

)𝑛 ∞∑
𝑗=0

𝐹−𝑗
ª®®¬ = exp

©­­«−
1(

1 − 1

𝑛

)𝑛 · 𝐹

𝐹 − 1
ª®®¬ = Ω(1) .

Therefore, in each cycle the algorithm will directly increase

𝜆 to 𝜆max and then reset to 1 with constant probability using

𝑂 (log 𝜆max) generations and 𝑂 (𝜆max) evaluations.
Since the self-adjusting (1, 𝜆) EA is non-elitist, there is still a

possibility for the algorithm to either jump down the cliff (but

not to the desired distance of 𝜅) or to reduce the number of ones.

If the number of one-bits is reduced, by Lemma 3.7 in [17] with

probability 1 − 𝑂 (1/𝑛) the number of one-bits will never drop

below 2𝑛/3 − 𝑂 (log𝑛) ones before reaching a point with 2𝑛/3
ones. Hence, by Lemma 4.2, it will take 𝑂 (log𝑛) generations and
𝑂 (log𝑛 + 𝜆0) = 𝑂 (𝜆max) evaluations in expectation to return to

a local optimum. If the algorithm jumps down the cliff, using the

same arguments as in Lemma 4.2 we can see that the algorithm will

use 𝑂 (log𝑛) generations and 𝑂 (𝜆max) evaluations to either find a

solution with at least 2𝑛/3+ log log𝑛

log log log𝑛
ones or jump back to the first

slope. If the algorithm finds a solution with at least 2𝑛/3+ log log𝑛

log log log𝑛

ones but with 𝜆 > 2
−𝜅/2 · (𝜅/2)! then by Lemma 4.10 it will take

𝑂 (log 𝜆max) generations and 𝑂 (𝜆max) evaluations in expectation

to either reduce 𝜆 to 𝜆 ≤ 2
−𝜅/2 · (𝜅/2)! or to return to the first slope.

Finally, when jumping back to the first slope, by Lemma 2.3, in

expectation the number of ones is reduced by Δ
↑
𝑖,𝜆
≤ 𝑑 + 1, that

is, in expectation the algorithm jumps to a point that has 𝑎 ≤ 1

less ones than the local optimum. Let 𝑇 ′ be the time to go back to

|𝑥 |
1
= 2𝑛/3 from |𝑥 |

1
= 2𝑛/3 − 𝑎. By the law of total expectation

and Lemma 4.2, E (𝑇 ′) = E (E (𝑇 | 𝑎)) ≤ E (𝑂 (𝑎 + log𝑛 + 𝜆0)) =
𝑂 (E (𝑎)) +𝑂 (log𝑛 + 𝜆0). Given that E (𝑎) ≤ 1 we obtain E (𝑇 ′) =
𝑂 (log𝑛 + 𝜆0) = 𝑂 (𝜆max) evaluations. For the number of genera-

tions we use the same arguments and obtain 𝑂 (log𝑛) generations.
Therefore, if the algorithm moves out of the local optimum it will

return to it in 𝑂 (log𝑛 + log 𝜆max) = 𝑂 (log 𝜆max) generations and
𝑂 (𝜆max) evaluations. In expectation this will happen only a con-

stant number of times before 𝜆 is reset to 1. This implies that in

expectation each cycle is comprised of𝑂 (log 𝜆max) generations and
𝑂 (𝜆max) evaluations.

It remains to account for the time before the first cycle. Using

the same arguments as before for any 𝜆0 ≤ 𝜆max and |𝑥0 |1 ≥ 2𝑛/3
the algorithm will spend 𝑂 (log 𝜆max) generations and 𝑂 (𝜆max)
evaluations to start the first cycle or reach the desired state. Noting

that the expected number of cycles is log𝑛 proves the claim. □

4.3 After jumping down the cliff

Now we show that, with probability Ω(1), we reach a search point

with at least 3𝑛/4 ones when starting from a 𝜅-safe state with

𝜅 :=
log log𝑛

log log log𝑛
. As in Section 3, the target of reaching 3𝑛/4 ones

is chosen such that the probability of an improving mutation is

always Ω(1).
Proving this claim is not straightforward for several reasons. It is

always possible to have a mutation jumping back up the cliff. This

probability decreases with the distance to the cliff (that is, |𝑥𝑡 |1 −
2𝑛/3) and it increases with 𝜆𝑡 as many offspring can amplify the

probability of a jump back up the cliff (cf. Lemma 2.3). Fortunately,
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the notion of 𝜅-safe states implies that we start with a distance of

at least 𝜅 to the cliff and a small 𝜆𝑡 , so that initially this probability

amplification does not pose a huge risk.

But small values of 𝜆 are risky for another reason. Since the

number of ones is larger than 2𝑛/3 and hence significantly larger

than 𝑛/2, the expected number of ones in any offspring is smaller

than that of its parent. With 𝜆𝑡 ≈ 1 there is a constant negative

drift towards decreasing the number of zeros and “slipping down”

the second slope. Fortunately, 𝜆𝑡 will increase during unsuccessful

generations and we will see that this effect prevents the algorithm

from slipping down the second slope.

In [17] we showed that, on OneMax, for the potential func-

tion from Definition 4.4 there is a positive drift in the potential

throughout the run: on OneMax, Lemma 4.5 holds for all non-

optimal search points. We further constructed a so-called “ratchet

argument”, arguing that significant decreases in the potential are

unlikely. In our approach, the potential and the fitness only differ

by a term of Θ(log𝑛), as stated in Lemma 4.7. Hence we concluded

that, with high probability, the best fitness never decreases by a

term of 𝑟 log𝑛, for some constant 𝑟 > 0.

Unfortunately, this ratchet argument is not directly applicable

here, since we can only guarantee a distance of 𝜅 :=
log log𝑛

log log log𝑛
≪

𝑟 log𝑛 to the cliff. Hence the ratchet argument from [17] has far

too much slack.

The proof of the ratchet argument in [17] applies the negative

drift theorem [27, 28] to an interval on the potential scale of size

Θ(log𝑛), in order to obtain failure probabilities that are polynomi-

ally small (that is, exponentially small in the interval length).

We refine the ratchet argument here by defining a revised po-

tential function tailored to a fitness range up to 3𝑛/4 ones, where
the fitness and the potential only differ by an additive term of Θ(1).
Then we apply the negative drift theorem [27, 28] to an interval

of size 𝜅/2 −𝑂 (1) = log log𝑛

2 log log log𝑛
−𝑂 (1) on the potential scale to

show that the number of ones does not drop below 2𝑛/3 + 𝜅/2 in
a time that is exponential in the interval length. More specifically,

the time period will be determined as 𝛾𝜅 , for some constant 𝛾 > 1.

During this time, the potential has a positive drift and with good

probability the algorithm moves sufficiently far away from the cliff,

that is, to a distance of Θ(𝛾𝜅 ).
Since 𝛾

log log𝑛

log log log𝑛 = 𝑜 (log𝑛), we can only guarantee a sub-

logarithmic increase in the distance and the failure probability

from the negative drift theorem is 𝜔 (1/log𝑛). Thus, we iterate this
argument three times, with exponentially increasing values for 𝜅,

until we reach a search point with at least 3𝑛/4 ones (or we return
to the first slope).

Throughout these arguments, we also show that 𝜆𝑡 is bounded

from above as 𝜆𝑡 ≤ 2
−𝜅/2 · (𝜅/2)! as in the definition of 𝜅-safe states.

This definition requires a distance of at least 𝜅 from the top of the

cliff, however we can only guarantee a distance of at least 𝜅/2. We

call such states weakly 𝜅-safe.

Definition 4.11. A state (𝑥𝑡 , 𝜆𝑡 ) is called weakly 𝜅-safe if |𝑥𝑡 |1 ≥
2𝑛/3 + 𝜅/2 and 𝜆𝑡 ≤ 2

−𝜅/2 · (𝜅/2)!.

We start by revising the potential function from [17] as follows.

Definition 4.12. Let 𝜀 := 𝑒−1
𝑒 −𝑠 . We define the potential function

ℎ(𝑋𝑡 ) as

ℎ(𝑋𝑡 ) = |𝑥𝑡 |1 −
𝑠𝑒

𝑒 − 1 log𝐹
©­«max

©­«
8𝑒 + log 𝑒

𝑒−1
(2/𝜀)𝐹 1/𝑠

𝜆𝑡
, 1

ª®¬ª®¬ .
Lemma 4.13. Consider the self-adjusting (1, 𝜆) EA as in Theo-

rem 4.1. For all states (𝑥𝑡 , 𝜆𝑡 ) with 𝑑 := |𝑥𝑡 |1 − 2𝑛/3 = 𝜔 (1),
|𝑥𝑡 |1 ≤ 3/4 and 𝜆𝑡 ≤ 2

−𝑑/2 · (𝑑/2)!,

E (ℎ(𝑋𝑡+1) − ℎ(𝑋𝑡 ) | 𝑋𝑡 ) ≥
1

2𝑒
− 𝑠

2(𝑒 − 1) > 0

for large enough 𝑛. This also holds when only considering improve-

ments that increase the fitness by 1.

Proof. The proof follows the proof of Lemma 3.4 in [17], us-

ing additional arguments to consider jumps up the cliff and the

possibility that 𝜆 is reset when 𝜆𝑡 = 𝜆max. In this proof, we

use 𝑝0
𝑖,𝜆

:= 1 − 𝑝→
𝑖,𝜆
− 𝑝←

𝑖,𝜆
− 𝑝
↑
𝑖,𝜆

to denote the probability of

not changing the current number of ones. We first assume that

𝜆max > 2
−𝑑/2 · (𝑑/2)!, which implies that resets are impossible

under the assumption 𝜆𝑡 ≤ 2
−𝑑/2 · (𝑑/2)!.

We first consider the case 𝜆𝑡 ≤ 8𝑒 + log 𝑒
𝑒−1
(2/𝜀) as then

𝜆𝑡+1 ≤ 8𝑒 + log 𝑒
𝑒−1
(2/𝜀)𝐹 1/𝑠 and ℎ(𝑋𝑡+1) = |𝑥𝑡+1 |1− 𝑠𝑒

𝑒−1 (log𝐹 (8𝑒 +
log 𝑒

𝑒−1
(2/𝜀)𝐹 1/𝑠 )−log𝐹 (𝜆𝑡+1)). When the number of ones increases,

in expectation they do so by Δ→
𝑖,𝜆

and since 𝜆𝑡+1 = 𝜆𝑡/𝐹 , the penalty
term

𝑠𝑒
𝑒−1 (log𝐹 (8𝑒 + log 𝑒

𝑒−1
(2/𝜀)𝐹 1/𝑠 ) − log𝐹 (𝜆𝑡 )) increases by 𝑠𝑒

𝑒−1
(unless 𝜆𝑡+1 = 1 is reached, in which case the increase might be

lower). When the number of ones does not change, the penalty

decreases by
𝑒

𝑒−1 . When the number of ones decreases, conditional

on |𝑥𝑡+1 |1 > 2𝑛/3, the expected decrease is at most Δ←
𝑖,𝜆

and the

penalty decreases by
𝑒

𝑒−1 . Finally, then when the algorithm creates

an offspring up the cliff the expected decrease in the number of

ones is Δ
↑
𝑖,𝜆

and the penalty increases by
𝑠𝑒
𝑒−1 . Together,

E

(
ℎ(𝑋𝑡+1) − ℎ(𝑋𝑡 ) | 𝑋𝑡 , 𝜆𝑡 ≤ 8𝑒 + log 𝑒

𝑒−1
(2/𝜀)

)
≥ 𝑝→

𝑖,𝜆

(
Δ→
𝑖,𝜆
− 𝑠𝑒

𝑒 − 1

)
+ 𝑝0

𝑖,𝜆
· 𝑒

𝑒 − 1 + 𝑝
←
𝑖,𝜆

(
−Δ←

𝑖,𝜆
+ 𝑒

𝑒 − 1

)
+ 𝑝↑

𝑖,𝜆

(
−Δ↑

𝑖,𝜆
− 𝑠𝑒

𝑒 − 1

)
.

Using Δ→
𝑖,𝜆
≥ 1 (which also holds when only considering fitness

increases by 1), Δ←
𝑖,𝜆
≤ 𝑒

𝑒−1 and Δ
↑
𝑖,𝜆
≤ 𝑑 + 1 by Lemma 2.3, this is

at least

𝑝→
𝑖,𝜆

(
1 − 𝑠𝑒

𝑒 − 1

)
+ 𝑝0

𝑖,𝜆
· 𝑒

𝑒 − 1 − 𝑝
↑
𝑖,𝜆

(
𝑑 + 1 + 𝑠𝑒

𝑒 − 1

)
.

We bound the second summand from below using
𝑒

𝑒−1 > 1 − 𝑠𝑒
𝑒−1

(note that the left-hand side is larger than 1 and the right-hand side

is less than 1) and obtain a lower bound of

𝑝→
𝑖,𝜆

(
1 − 𝑠𝑒

𝑒 − 1

)
+ 𝑝0

𝑖,𝜆

(
1 − 𝑠𝑒

𝑒 − 1

)
− 𝑝↑

𝑖,𝜆

(
𝑑 + 1 + 𝑠𝑒

𝑒 − 1

)
= (1 − 𝑝←

𝑖,𝜆
− 𝑝↑

𝑖,𝜆
)
(
1 − 𝑠𝑒

𝑒 − 1

)
− 𝑝↑

𝑖,𝜆

(
𝑑 + 1 + 𝑠𝑒

𝑒 − 1

)
= (1 − 𝑝←

𝑖,𝜆
)
(
1 − 𝑠𝑒

𝑒 − 1

)
− 𝑝↑

𝑖,𝜆
(𝑑 + 2) .
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Lemma 2.3 shows that 𝑝←
𝑖,𝜆
≤ 𝑒−1

𝑒 for all 𝜆, hence 1 − 𝑝←
𝑖,𝜆
≥ 1

𝑒 and

𝑝
↑
𝑖,𝜆
≤ 𝜆 (3/4)𝑑

𝑑!
. If 𝜆 = 𝑂 (1) and 𝑑 = 𝜔 (1) then 𝑝

↑
𝑖,𝜆
(𝑑 + 2) = 𝑜 (1),

hence for a sufficiently large 𝑛,

E

(
ℎ(𝑋𝑡+1) − ℎ(𝑋𝑡 ) | 𝑋𝑡 , 𝜆𝑡 ≤ 8𝑒 + log 𝑒

𝑒−1
(2/𝜀)

)
≥ 1

𝑒
− 𝑠

𝑒 − 1 − 𝑜 (1) ≥
1

2𝑒
− 𝑠

2(𝑒 − 1) .

For the case 8𝑒 + log 𝑒
𝑒−1
(2/𝜀) < 𝜆𝑡 < 2

−𝑑/2 · (𝑑/2)!, in an unsuc-

cessful generation the penalty term is capped at its maximum and

we pessimistically bound the positive effect on the potential from

below by 0. However, the probability of increasing the number of

ones is large enough to show a positive drift.

By assumption 𝜆𝑡 ≤ 2
−𝑑/2 · (𝑑/2)!. Along with (5) from

Lemma 2.3,

𝑝
↑
𝑖,𝜆
≤ 𝜆(3/4)𝑑

𝑑!
≤

(
3

8

)𝑑
.

We also have 𝜆𝑡 ≥ 8𝑒 + log 𝑒
𝑒−1
(2/𝜀) ≥ 8𝑒 since 1/𝜀 ≥ 𝑒

𝑒−1 . Then,

by Lemma 2.3, 8𝑒 + log 𝑒
𝑒−1
(2/𝜀) < 𝜆𝑡 ≤ 2

−𝑑/2 · (𝑑/2)! implies the

following two statements.

𝑝→
𝑖,𝜆
≥ 1 −

(
1 − 1

4𝑒

)
8𝑒

−
(
3

8

)𝑑
≥ 1 − 1

2𝑒
−

(
3

8

)𝑑
𝑝←
𝑖,𝜆
Δ←
𝑖,𝜆
≤

(
𝑒 − 1
𝑒

)
8𝑒+log 𝑒

𝑒−1
(2/𝜀)
· 𝑒

𝑒 − 1

=

(
𝑒 − 1
𝑒

)
8𝑒−1+log 𝑒

𝑒−1
(2/𝜀)

≥
(
𝑒 − 1
𝑒

)
log 𝑒

𝑒−1
(2/𝜀)

=
𝜀

2

.

Together,

E

(
ℎ(𝑋𝑡+1) − ℎ(𝑋𝑡 ) | 𝑋𝑡 , 8𝑒 + log 𝑒

𝑒−1
(2/𝜀) < 𝜆𝑡 < 2

−𝑑/2 · (𝑑/2)!
)

≥ 𝑝→
𝑖,𝜆

(
1 − 𝑠𝑒

𝑒 − 1

)
+ 𝑝←

𝑖,𝜆

(
−Δ←

𝑖,𝜆

)
− 𝑝↑

𝑖,𝜆

(
𝑑 + 1 + 𝑠𝑒

𝑒 − 1

)
≥

(
1 − 1

2𝑒
−

(
3

8

)𝑑 ) (
1 − 𝑠𝑒

𝑒 − 1

)
− 𝜀

2

−
(
3

8

)𝑑
(𝑑 + 2)

given that 𝑑 = 𝜔 (1),

≥
(
1 − 1

𝑒

) (
1 − 𝑠𝑒

𝑒 − 1

)
− 𝜀

2

− 𝑜 (1)

using the definition 𝜀 := 𝑒−1
𝑒 − 𝑠 ,

=

(
1 − 1

𝑒

) (
1 − 𝑠𝑒

𝑒 − 1

)
− 𝑒 − 1

2𝑒
+ 𝑠

2

− 𝑜 (1)

=
1

2

(
𝑒 − 1
𝑒
− 𝑠

)
− 𝑜 (1) = 𝑒 − 1 − 𝑒𝑠

2𝑒
− 𝑜 (1)

for sufficiently large 𝑛,

≥ 𝑒 − 1 − 𝑒𝑠
2𝑒 (𝑒 − 1) =

1

2𝑒
− 𝑠

2(𝑒 − 1) .

Now, if 𝜆max ≤ 2
−𝑑/2 ·(𝑑/2)! then resetsmay happen if 𝜆𝑡 = 𝜆max.

A reset decreases the potential by at most𝑛+𝑂 (1) as this is the range
of the potential scale. The probability of a reset is at most 𝑒−Ω (𝑛)

by Lemma 4.3. Hence, this only affects the drift by an additive term

−𝑂 (𝑛) · 𝑒−Ω (𝑛) = −𝑜 (1), which can easily be absorbed in the −𝑜 (1)
terms from the above calculations. □

The following lemma shows that 𝜆 typically does not grow be-

yond the threshold 2
−𝜅/2 · (𝜅/2)! from the definition of weakly

𝜅-safe states.

Lemma 4.14. Consider the self-adjusting (1, 𝜆) EA as in Theo-

rem 4.1. Then for all 𝜅 ≥ 324𝐹 1/𝑠 the following holds. If the current
state (𝑥𝑡 , 𝜆𝑡 ) has 𝜆𝑡 ≤ 2

−𝜅/2 · (𝜅/2)! and 2𝑛/3 < |𝑥𝑡 |1 < 3𝑛/4, then
with probability at least 1 − 2−2𝜅 we have 𝜆𝑡+1 ≤ 2

−𝜅/2 · (𝜅/2)!.

Proof. Since 𝜆𝑡 ≤ 2
−𝜅/2 · (𝜅/2)!, a necessary condition for

𝜆𝑡+1 > 2
−𝜅/2 · (𝜅/2)! is that generation 𝑡 is unsuccessful. Since

|𝑥𝑡 |1 < 3𝑛/4, the probability of finding an improvement in any

mutation is at least 1/(4𝑒) and the probability of an unsuccessful

generation is at most(
1 − 1

4𝑒

)𝐹−1/𝑠2−𝜅/2 (𝜅/2)!
≤

(
4𝑒

4𝑒 − 1

)−𝐹−1/𝑠 (2𝑒)−𝜅/2 (𝜅/2)𝜅/2
= 2
−𝐹−1/𝑠 (𝜅/(4𝑒))𝜅/2 log( 4𝑒

4𝑒−1 ) . (13)

The condition 𝜅 ≥ 324𝐹 1/𝑠 implies

𝜅

4𝑒
≥

©­­«1 +
4

log

(
4𝑒

4𝑒−1

) ª®®¬ 𝐹 1/𝑠 ≥
©­­«1 +

4𝐹 1/𝑠

log

(
4𝑒

4𝑒−1

) ª®®¬ .
We bound the absolute value of the exponent in (13) using (1+𝑦)𝑥 ≥
𝑥𝑦 for 𝑥 ∈ N0, 𝑦 ≥ 0, as follows.

𝐹−1/𝑠 (𝜅/(4𝑒))𝜅/2 log
(

4𝑒

4𝑒 − 1

)
≥ 𝐹−1/𝑠

©­­«1 +
4𝐹 1/𝑠

log

(
4𝑒

4𝑒−1

) ª®®¬
𝜅/2

log

(
4𝑒

4𝑒 − 1

)
≥ 𝐹−1/𝑠

4𝐹 1/𝑠

log

(
4𝑒

4𝑒−1

) · 𝜅/2 · log (
4𝑒

4𝑒 − 1

)
= 2𝜅.

Hence the probability of an unsuccessful generation is at most

2
−2𝜅

. □

The following lemma now generalises and refines the “ratchet

argument” from [17].

Lemma 4.15. Consider the self-adjusting (1, 𝜆) EA as in Theo-

rem 4.1. Let 𝑇
3𝑛/4 = inf{𝑡 | |𝑥𝑡 |1 ≥ 3𝑛/4} be the number of genera-

tions until a search point with at least 3𝑛/4 ones is reached.
There are constants 𝛾 := 𝛾 (𝑠, 𝐹 ) ∈ (1, 2] and 𝜅0 := 𝜅0 (𝑠, 𝐹 ,𝛾) ≥ 2

such that for all 𝜅 ≥ 𝜅0 the following holds. If the initial state (𝑥0, 𝜆0)
is𝜅-safe with |𝑥0 |1 < 3𝑛/4 then with probability at least 1−𝛾−Ω (𝜅) all
states during the next min{𝛾𝜅 ,𝑇

3𝑛/4} generations are weakly 𝜅-safe.

Proof. Let (𝑥0, 𝜆0) denote the initial state of the self-adjusting
(1, 𝜆) EA. If |𝑥0 |1 ≥ 3𝑛/4 the statement is trivial, hence we assume

|𝑥0 |1 < 3𝑛/4. As in the proof of Lemma 3.7 in [17], we are setting

up to apply the negative drift theorem [27, 28].

The value of 𝛾 will be determined later on, ensuring 1 < 𝛾 ≤ 2.

Choosing 𝜅0 ≥ 324𝐹 1/𝑠 and recalling that the initial state is 𝜅-safe,

Lemma 4.14 states that, with probability at least 1 − 2
−2𝜅

, 𝜆1 ≤
2
−𝜅/2 · (𝜅/2)! as long as the number of ones is smaller than 3𝑛/4. By
induction and a union bound, this holds for the first min{𝛾𝜅 ,𝑇

3𝑛/4}
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generations with probability at least 1 − 2−2𝜅 · min{𝛾𝜅 ,𝑇
3𝑛/4} ≥

1 − 2−2𝜅 · 𝛾𝜅 ≥ 1 − 𝛾−𝑘 as 𝛾 ≤ 2, unless the algorithm jumps back

to the first slope. We assume in the following that the bound on 𝜆𝑡
always applies, while the algorithm remains on the second slope

(and has not found a search point with at least 3𝑛/4 ones yet).
Let 𝛼 := 𝑠𝑒

𝑒−1 log𝐹
(
8𝑒 + log 𝑒

𝑒−1
(2/𝜀)𝐹 1/𝑠

)
= 𝑂 (1) abbreviate the

maximum difference between the potential ℎ and the number of

ones, then we start with a potential of at least 2𝑛/3+𝜅−𝛼 . We apply

the negative drift theorem [27, 28] to an interval [𝑎, 𝑏] := [2𝑛/3 +
𝜅/2, 2𝑛/3+𝜅−𝛼] with respect to the current potential. By choosing

𝜅0 ≥ 6𝛼 , we can ensure that𝑏−𝑎 = 𝜅−𝛼−𝜅/2 = 𝜅/3+𝜅/6−𝛼 ≥ 𝜅/3.
We pessimistically assume that the number-of-ones component

of ℎ can only increase by at most 1. Lemma 4.13 has already shown

that, even under this assumption, the drift is at least a positive

constant. This implies the first condition of Theorem 2 in [28]. For

the second condition, we need to bound transition probabilities for

the potential. Owing to our pessimistic assumption, the number of

ones can only increase by at most 1.

For jumps decreasing the number of ones, we need to argue

more carefully. Let 𝑖 = |𝑥𝑡 |1 ≥ 𝑎 be the current number of ones

and let 𝑝𝑖, 𝑗 be the probability that |𝑥𝑡+1 |1 = 𝑖 − 𝑗 . Note that a

jump back to the first slope it is sufficient that one offspring has at

most 2𝑛/3 ones. A necessary requirement is that 𝑗 bits flip, which

has probability at most 1/( 𝑗 !). By a union bound over 𝜆 offspring,

𝑝𝑖, 𝑗 ≤ 𝜆/( 𝑗 !) ≤ 2
−𝜅/2 · (𝜅/2)!/( 𝑗 !) using our bound on 𝜆. For

𝑗 ≥ 𝜅/2 (as 𝜅 ≥ 2), we have 𝑗 ! ≥ (𝜅/2)! · 2𝑗−𝜅/2 and 𝑝𝑖, 𝑗 ≤ 2
−𝑗
.

This implies for all 𝑖 ≥ 𝑎 and all 𝑗 with 𝑖 − 𝑗 ≤ 2𝑛/3:

Pr ( |𝑥𝑡 |1 − |𝑥𝑡+1 |1 ≥ 𝑗) ≤
∑
𝑗 ′≥ 𝑗

2
−𝑗 ′ ≤ 2 · 2−𝑗 .

In particular, 𝑝
↑
𝑖,𝜆
≤ ∑𝑛−𝑖

𝑗=𝜅/2 𝑝𝑖, 𝑗 ≤
∑∞

𝑗=𝜅/2 2 · 2
−𝑗 = 4 · 2−𝜅/2.

For 𝑖 − 𝑗 > 2𝑛/3 the number of ones only decreases by 𝑗 if all

offspring decrease their number of ones by at least 𝑗 , or if there

is one offspring on the first slope. The probability of all offspring

decreasing their number of ones by 𝑗 is bounded by the probability

that the first offspring decreases its number of ones by 𝑗 . This

is bounded by the probability of 𝑗 bits flipping, which is at most

1/( 𝑗 !) ≤ 2/2𝑗 . Hence,

∀𝑖 − 𝑗 > 2𝑛/3 : Pr ( |𝑥𝑡 |1 − |𝑥𝑡+1 |1 ≥ 𝑗) ≤ 2 · 2−𝑗 + 𝑝↑
𝑖,𝜆
≤ 6 · 2−𝑗 .

The possible penalty in the definition of ℎ changes by at most

max

(
𝑠𝑒
𝑒−1 ,

𝑠𝑒
𝑒−1 ·

1

𝑠

)
= 𝑒

𝑒−1 < 1. Hence, for all 𝑡 ,

Pr ( |ℎ(𝑋𝑡−1) − ℎ(𝑋𝑡 ) | ≥ 𝑗 + 1 | ℎ(𝑋𝑡 ) > 𝑎) ≤ 12

2
𝑗+1 ,

which meets the second condition of Theorem 2 in [28] when choos-

ing 𝛿 := 1 and 𝑟 (ℓ) := 12.

The negative drift theorem [27, 28] now implies that there ex-

ists a constant 𝑐∗ such that the probability of the number of ones

dropping below 𝑎 in 2
𝑐∗ (𝑏−𝑎)/12 ≥ 2

𝑐∗𝜅/36
generations (or reaching

a search point with at least 3𝑛/4 ones) is 2−Ω ( (𝑏−𝑎)/12) = 2
−Ω (𝜅)

.

Choosing 𝛾 := min{2𝑐∗/36, 2}, this is at least 𝛾𝜅 generations and a

probability of 𝛾−Ω (𝜅) as claimed. Taking a union bound over this

failure probability and that from Lemma 4.14 proves the claim. □

Now we show that with probability Ω(1) a search point with

at least 3𝑛/4 ones is reached, without returning to the first slope

and without resetting 𝜆. Thus, with the claimed probability the

algorithm behaves as the self-adjusting (1, 𝜆) EA from [17] on

OneMax throughout this part of the run.

Lemma 4.16. Consider the self-adjusting (1, 𝜆) EA as in Theo-

rem 4.1. Assume the conditions from Lemma 4.15 hold for constants 𝛾

and 𝜅 :=
log log𝑛

log log log𝑛
. Then with probability Ω(1) a search point with

at least 3𝑛/4 ones is reached within 𝑂 (𝑛) generations.
Moreover, with the claimed probability the algorithm does not go

back to the first slope and does not reset 𝜆 before a search point with

at least 3𝑛/4 ones is reached.

Proof. The statement of Lemma 4.15 satisfies the preconditions

of Lemma 4.13 for 𝑑 = 𝜅. Then Lemma 4.13 implies a positive drift

E (ℎ(𝑋𝑡+1) − ℎ(𝑋𝑡 ) | 𝑋𝑡 ) ≥
1

2𝑒
− 𝑠

2(𝑒 − 1) C 𝛿

for the next 𝛾𝜅 generations, unless a search point with at least

3𝑛/4 ones has been reached. In the latter case we are done,

hence we assume that the drift is bounded from below as stated

through the next 𝑡𝜅 := min{𝛾𝜅 , 𝑛/𝛿} generations. By the additive

drift theorem [15], the expected time to increase the potential

by 𝛿/12 · min{𝛾𝜅 , 𝑛/𝛿}, while the drift bound holds, is at most

𝛿/12·min{𝛾𝜅 ,𝑛/𝛿 }
𝛿

= min{𝛾𝜅/12, 𝑛/(12𝛿)}. By Markov’s inequality,

the probability that after 𝑡𝜅 steps the potential has not increased

by 𝛿/12 ·min{𝛾𝜅 , 𝑛/𝛿} = min{𝛿/12 · 𝛾𝜅 , 𝑛/12} is at most 1/12.
Assuming that the potential has increased by min{𝛿/12 ·

𝛾𝜅 , 𝑛/12}, by Definition 4.13 the number of ones has increased

by min{𝛿/12 · 𝛾𝜅 , 𝑛/12} − 𝑂 (1). Since we start with at least

2𝑛/3 + 𝜅 = 2𝑛/3 + 𝜔 (1) ones, there is a generation amongst

the next 𝛾𝜅 generations in which the number of ones is at least

min{2𝑛/3 + 𝛿/12 · 𝛾𝜅 , 3𝑛/4}.
Let 𝜅0 := 𝜅 =

log log𝑛

log log log𝑛
and define 𝜅𝑖 := 𝛿/12 · 𝛾𝜅𝑖−1 for 𝑖 > 0.

Note that we have just showed that we have found a search point

with at least min{𝜅1, 3𝑛/4} ones. If the number of ones is less than

3𝑛/4, the current state (𝑥𝑡 , 𝜆𝑡 ) is 𝜅1-safe as it is weakly 𝜅0-safe and
so 𝜆𝑡 ≤ 2

−𝜅0/2 · (𝜅0/2)! ≤ 2
−𝜅1/2 · (𝜅1/2)!.

Iterating the above argument with 𝜅1 instead of 𝜅0, we find a

search point with at least min{2𝑛/3 + 𝜅2, 3𝑛/4} ones within the

next min{𝛾𝜅1 , 𝑛/𝛿} generations, with probability at least 1− 1/12−
𝛾−Ω (𝜅1) . We again iterate the argument with 𝜅2 and once again

with 𝜅3. We claim that 𝑡𝜅2 := min{𝛾𝜅2 , 𝑛/𝛿} = 𝑛/𝛿 and show this

by bounding 𝜅1, 𝜅2 and 𝜅3 from below.

𝜅1 =
𝛿

12

𝛾
log log𝑛

log log log𝑛 = 2
log(𝛾 ) · log log𝑛

log log log𝑛
+log(𝛿/12)

≥ 2

log

(
2

log(𝛾 ) log log𝑛
)
=

2

log(𝛾) log log𝑛.

Now, 𝜅2 is at least

𝜅2 =
𝛿

12

𝛾𝜅1 ≥ 𝛿

12

𝛾
2

log(𝛾 ) log log𝑛 =
𝛿

12

log
2 𝑛 ≥ 2

log(𝛾) log𝑛

for 𝑛 large enough. Likewise,

𝜅3 =
𝛿

12

𝛾𝜅2 ≥ 𝛿

12

· 𝛾
2

log(𝛾 ) log𝑛 =
𝛿

12

· 𝑛2 .
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Together, we have that within min{𝛾𝜅0 , 𝑛/𝛿} + min{𝛾𝜅1 , 𝑛/𝛿} +
min{𝛾𝜅2 , 𝑛/𝛿} = 𝑂 (𝑛) generations, with probability at least 1 −
3

12
−𝛾−Ω (𝜅0) −𝛾−Ω (𝜅1) −𝛾−Ω (𝜅2) ≥ 3

4
− 3𝛾−Ω (𝜅0) = Ω(1) we have

reached a search point with at least 3𝑛/4 ones, without going back

to the first slope. The probability of a reset during 𝑂 (𝑛) expected
generations is exponentially small by Lemma 4.3 and (9), hence this

failure probability can be absorbed in the Ω(1) probability bound.

This completes the proof. □

4.4 Finding the global optimum

Once the self-adjusting (1, 𝜆) EA moves far away from the cliff, the

probability of jumping back up the cliff is reduced, and the next

part of the optimisation resembles OneMax. The algorithm still

can reset 𝜆 to 1. Such a steep decrease of 𝜆 would typically make

the algorithm slip down the second slope until 𝜆 recovers to large

enough values that support hill climbing. Hence, resets would break

the runtime analysis made in [17]. We show in Lemma 4.17 that,

with probability Ω(1), the algorithm neither jumps back up the cliff

nor resets 𝜆 during the last part of the optimisation. This allows us

to apply the previous analysis from [17] on OneMax.

Lemma 4.17. Consider the self-adjusting (1, 𝜆) EA as in Theo-

rem 4.1. For any initial 𝜆0 ≤ 𝜆max with 𝜆0 = 𝑂 (𝑛 log𝑛) and any

initial search point 𝑥0 with |𝑥0 |1 ≥ 3𝑛/4 the probability that the

self-adjusting (1, 𝜆) EA creates the optimum without jumping back

up the cliff or resetting 𝜆 to 1 is at least 1 − 1

𝑒−1 −𝑂
(
log

3 (𝑛)
𝑛

)
.

Proof. As long as the self-adjusting (1, 𝜆) EA does not jump

back up the cliff, the self-adjusting (1, 𝜆) EA behaves as the self-

adjusting (1, 𝜆) EA on OneMax. Additionally, if it does not have

an unsuccessful generation with 𝜆 = 𝜆max it will never reset to 1,

behaving as the self-adjusting (1, 𝜆) EA studied in [17].

From [17, Theorem 3.1 and Theorem 3.5] we know that the self-

adjusting (1, 𝜆) EA solves OneMax in expected 𝑂 (𝑛) generations
and 𝑂 (𝑛 log𝑛) evaluations. Therefore, within these expected times

our algorithm either finds the global optimum, jumps back up the

cliff or resets 1. We show that the with probability Ω(1), a global
optimum is reached.

In order for 𝜆 to reset at the same time as there is a jump back up

the cliff, at least one offspring must flip 𝑛/3 one-bits and all other

offspring must not increase their fitness. The probability of flipping

𝑛/3 bits is 𝑛−Ω (𝑛) , hence the probability of both events happening

at the same time is at most 𝑛−Ω (𝑛) .
By Lemma 3.7 in [17] if the initial search point 𝑥0 has |𝑥0 |1 ≥

3𝑛/4, with probability 1−𝑂 (1/𝑛) the number of one-bits will never

drop below 3𝑛/4−𝑂 (log𝑛) before finding the optimum. This means

that, for the algorithm to jump back up the cliff at least one offspring

must flip a linear amount of bits. The probability that one offspring

flips a linear amount of bits is 𝑛−Ω (𝑛) . By (9), the probability that

this happens during 𝑂 (𝑛 log𝑛) expected evaluations is still 𝑛−Ω (𝑛) .
In the following we assume that we never return to the first slope.

To show that there is never an unsuccessful generation with

𝜆 = 𝜆max (i.e. 𝜆 never resets to 1) we divide the optimisation in two

phases. The first phase ends the first time a state (𝑥𝑡 , 𝜆𝑡 ) is found
with 𝜆𝑡 ≥ 4 log𝑛 and |𝑥𝑡 |1 ≥ 𝑛 − 3 ln𝑛 or the optimum is found,

and the second phase ends when the optimum is found.

During the first phase, since 𝜆max > 4 log𝑛, we can only reach

𝜆 = 𝜆max if |𝑥 |1 < 𝑛− 3 ln𝑛 otherwise we would start phase two. In

order to reach 𝜆 = 𝜆max at least one generation with 𝜆 ≥ 𝑒𝑛 must

be unsuccessful. The probability of an unsuccessful generation with

𝜆 ≥ 𝑒𝑛 is at most

1 − 𝑝→
𝑖,𝜆
+ 𝑝↑

𝑖,𝜆
≤

(
1 − 𝑛 − 𝑖

𝑒𝑛

)𝑒𝑛
≤

(
1 − 3 ln𝑛

𝑒𝑛

)𝑒𝑛
≤ 𝑒−3 ln𝑛 = 𝑛−3 .

Given that the optimum is found after 𝑂 (𝑛) expected generations,

by (9) the probability of reaching 𝜆 = 𝜆max during the first phase is

𝑂 (1/𝑛2).
For the second phase we first argue that the current fitness

does not decrease, with high probability. The second phase starts

with 𝜆 ≥ 4 log𝑛 and by Lemma 3.7 in [17] while 𝜆𝑡 ≥ 4 log𝑛 the

fitness is not reduced before reaching the optimum with probability

1−𝑂 (1/𝑛). We now show that 𝜆 ≥ 4 log𝑛 throughout the remainder

of the run with high probability.

By Lemma 3.6 in [17] from |𝑥 |
1
≥ 𝑛 − 3 ln𝑛 in expectation the

optimum will be reached in 𝑂 (log𝑛) generations. To reduce 𝜆 to a

value smaller than 4 log𝑛, a generation with 𝜆 < 4𝐹 log𝑛 must be

successful. This event has a probability of at most

1 −
(
𝑖

𝑛

)𝜆
≤ 1 −

(
1 − 3 ln𝑛

𝑛

)
4𝐹 log𝑛

≤ 12𝐹 log2 𝑛

𝑛 log 𝑒
= 𝑂

(
log

2 (𝑛)
𝑛

)
.

By (9) the probability that 𝜆 is reduced to a value less than 4 log𝑛

during the next𝑂 (log𝑛) generations is𝑂
(
log

3 (𝑛)
𝑛

)
. Accounting for

both failures with probability 1 −𝑂
(
log

3 (𝑛)
𝑛

)
each fitness value is

left at most once.

Now we can calculate the probability of resetting 𝜆 by consid-

ering at most one generation with 𝜆 = 𝜆max per fitness value. We

only have a reset of 𝜆 if one such generation is unsuccessful. Thus,

the probability of resetting 𝜆 during the second phase is at most

𝑛−1∑
𝑖=𝑛−3 ln𝑛

(
1 − 𝑝+

𝑖,𝜆max

)
≤

𝑛−1∑
𝑖=𝑛−3 ln𝑛

(
1 − 𝑛 − 𝑖

𝑒𝑛

)𝑒𝑛𝐹 1/𝑠

≤
𝑛−1∑

𝑖=𝑛−3 ln𝑛
𝑒−𝐹

1/𝑠 (𝑛−𝑖) =
3 ln𝑛∑
𝑗=1

𝑒−𝐹
1/𝑠 𝑗 ≤

∞∑
𝑗=1

𝑒−𝐹
1/𝑠 𝑗

=
1

1 − 𝑒−𝐹 1/𝑠 − 1 =
1

exp(𝐹 1/𝑠 ) − 1
≤ 1

𝑒 − 1 .

Adding up all failure probabilities completes the proof. □

4.5 Putting Things Together

Now we are able to prove the claimed bounds of 𝑂 (𝑛) expected
generations and𝑂 (𝑛 log𝑛) expected evaluations from Theorem 4.1.

Proof of Theorem 4.1. From any initial state, by Lemma 4.2 we

reach a solution 𝑥𝑡 with |𝑥𝑡 |1 ≥ 2𝑛/3 in expected𝑂 (𝑛) generations
and 𝑂 (𝑛 + 𝜆max) evaluations.

Then, by Lemma 4.9, the algorithm reaches a 𝜅-safe state (for

𝜅 :=
log log𝑛

log log log𝑛
) or a search point with at least 3𝑛/4 ones in

𝑂 (log(𝜆max) log𝑛) expected generations and 𝑂 (𝜆max log𝑛) ex-
pected evaluations.

Together, along with 𝜆max = Ω(𝑛) and 𝜆max = poly (𝑛), the total
time to reach a 𝜅-safe state or a search point with at least 3𝑛/4
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ones from an arbitrary initial state is𝑂 (log(𝜆max) log𝑛+𝑛) = 𝑂 (𝑛)
generations and 𝑂 (𝜆max log𝑛) evaluations.

By Lemma 4.16 with probability Ω(1) we reach a search point

with at least 3𝑛/4 ones within 𝑂 (𝑛) generations, without going
back to the first slope or resetting 𝜆. During this time, the algo-

rithm behaves like the self-adjusting (1, 𝜆) EA without resetting on

OneMax and we obtain an upper bound of 𝑂 (𝑛 log𝑛) evaluations
from [17]. Hence, the expected number of evaluations until we re-

turn to the first slope, reset 𝜆 or reach a search point with 3𝑛/4 ones
is 𝑂 (𝑛 log𝑛). In expectation, a constant number of trials suffices

to find a search point with at least 3𝑛/4 ones. Hence, from any

initial state, in expectation in 𝑂 (𝑛) generations and 𝑂 (𝜆max log𝑛)
evaluations we reach a search point with at least 3𝑛/4 ones.

Likewise, from a search point with at least 3𝑛/4 ones, by

Lemma 4.17 with probability Ω(1) we find the optimum without

resetting 𝜆 or returning to the first slope, and hence the analysis

from [17] still applies. Thus, in expected 𝑂 (𝑛) generations and
𝑂 (𝑛 log𝑛) evaluations we either reach the global optimum, return

to the first slope or reset 𝜆, and the probability of reaching the

optimum is Ω(1). Iterating this argument an expected constant

number of times proves the claimed bound. □

5 CONCLUSIONS

The usefulness of parameter control has so far mainly been demon-

strated for elitist EAs on relatively easy problems. For the more dif-

ficult multimodal problem Cliff we showed that the self-adjusting

(1, 𝜆) EA using success-based rules and a reset mechanism can find

the global optimum in 𝑂 (𝑛) expected generations and 𝑂 (𝑛 log𝑛)
expected evaluations. This is a speedup of order Ω(𝑛2.9767/log𝑛)
over the expected optimisation time with the best fixed value of 𝜆.

The latter conclusion was obtained by refining the previous

bounds on the expected optimisation time of the (1, 𝜆) EA on

Cliff from [18], 𝑂 (𝑒5𝜆) = 𝑂 (148.413𝜆) and min{𝑛𝑛/4, 𝑒𝜆/4}/3 =

min{𝑛𝑛/4, 1.284𝜆}/3, towards bounds of Ω(𝜉𝜆) and𝑂 (𝜉𝜆 log𝑛), for
𝜉 ≈ 6.196878, revealing the degree of the polynomial in the expected

runtime of the (1, 𝜆) EA with the best fixed 𝜆 as 𝜂 ≈ 3.976770136.

Our results demonstrate the power of parameter control for the

multimodal Cliff problem and that drastic performance improve-

ment can be obtained. Several open questions remain, for instance,

in how far our results generalise to Cliff functions where the posi-

tion of the cliff is chosen differently from 2𝑛/3 ones and how the

considered algorithm would perform on other problems.

REFERENCES

[1] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2014. Unbiased Black-Box

Complexity of Parallel Search. In Proc. of PPSN XIII. Springer, 892–901.

[2] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2015. Black-box Com-

plexity of Parallel Search with Distributed Populations. In Proc. of FOGA. ACM,

3–15.

[3] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed

and Adaptive Mutation Rates for the LeadingOnes Problem. In Proc. of PPSN XI,

Vol. 6238. Springer, 1–10.

[4] Brendan Case and Per Kristian Lehre. 2020. Self-Adaptation in Nonelitist Evolu-

tionary Algorithms on Discrete Problems with Unknown Structure. IEEE Trans.

Evol. Comput. 24, 4 (2020), 650–663.

[5] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. 2020. When Hypermuta-

tions and Ageing Enable Artificial Immune Systems to Outperform Evolutionary

Algorithms. Theor. Comput. Sci. 832 (2020), 166–185.

[6] Duc-Cuong Dang and Per Kristian Lehre. 2016. Self-adaptation of Mutation Rates

in Non-elitist Populations. In Proc. of PPSN XIV. Springer, Cham, 803–813.

[7] Benjamin Doerr. 2020. Theory of Evolutionary Computation: Recent Developments

in Discrete Optimization. Springer, Chapter Probabilistic Tools for the Analysis

of Randomized Optimization Heuristics, 1–87.

[8] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting

Parameter Choices for the (1+(𝜆,𝜆)) Genetic Algorithm. Algorithmica 80, 5 (2018),

1658–1709.

[9] Benjamin Doerr and Carola Doerr. 2020. Theory of Evolutionary Computation:

Recent Developments in Discrete Optimization. Springer, Chapter Theory of

Parameter Control for Discrete Black-box Optimization: Provable Performance

Gains Through Dynamic Parameter Choices, 271–321.

[10] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From Black-Box Com-

plexity to Designing New Genetic Algorithms. In Theor. Comput. Sci., Vol. 567.

87–104.

[11] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2019. Self-Adjusting Muta-

tion Rates with Provably Optimal Success Rules. In Proc. of GECCO. ACM.

[12] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2019. The (1+ 𝜆)

Evolutionary Algorithm with Self-Adjusting Mutation Rate. Algorithmica 81, 2

(2019), 593–631.

[13] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker.

2018. On the Runtime Analysis of Selection Hyper-Heuristics with Adaptive

Learning Periods. In Proc. of GECCO. ACM, 1015–1022.

[14] Benjamin Doerr, Carsten Witt, and Jing Yang. 2021. Runtime Analysis for Self-

adaptive Mutation Rates. Algorithmica 83, 4 (2021), 1012–1053.

[15] Jun He and Xin Yao. 2004. A Study of Drift Analysis for Estimating Computation

Time of Evolutionary Algorithms. Nat. Comput. 3, 1 (2004), 21–35.

[16] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2020. On the Choice of the

Parameter Control Mechanism in the (1 + (𝜆, 𝜆)) Genetic Algorithm. In Proc. of

GECCO. ACM, 832–840.

[17] Mario Alejandro Hevia Fajardo and Dirk Sudholt. 2021. Self-Adjusting Population

Sizes for Non-Elitist Evolutionary Algorithms: Why Success Rates Matter. In

Proc. of GECCO. ACM, 1151–1159.

[18] Jens Jägersküpper and Tobias Storch. 2007. When the Plus Strategy Outperforms

the Comma Strategy and When Not. In Proc. of IEEE FOCI. IEEE, 25–32.

[19] Thomas Jansen and Dirk Sudholt. 2010. Analysis of an Asymmetric Mutation

Operator. Evol. Comput. 18, 1 (2010), 1–26.

[20] Jörg Lässig and Dirk Sudholt. 2011. Adaptive Population Models for Offspring

Populations and Parallel Evolutionary Algorithms. In Proc. of FOGA. ACM, 181–

192.

[21] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Varia-

tion. Algorithmica 64, 4 (2012), 623–642.

[22] Johannes Lengler. 2020. A General Dichotomy of Evolutionary Algorithms on

Monotone Functions. IEEE Trans. Evol. Comput. 24, 6 (2020), 995–1009.

[23] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2019. On

the Time Complexity of Algorithm Selection Hyper-Heuristics for Multimodal

Optimisation. In Proc. of AAAI, Vol. 33. 2322–2329.

[24] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2020. How the

Duration of the Learning Period Affects the Performance of Random Gradient

Selection Hyper-Heuristics. In Proc. of AAAI, Vol. 34. 2376–2383.

[25] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. 2020. Simple

Hyper-heuristics Control the Neighbourhood Size of Randomised Local Search

Optimally for LeadingOnes. Evol. Comput. 28, 3 (2020), 437–461.

[26] Andrea Mambrini and Dirk Sudholt. 2015. Design and Analysis of Schemes for

Adapting Migration Intervals in Parallel Evolutionary Algorithms. Evol. Comput.

23, 4 (2015), 559–582.

[27] Pietro S. Oliveto and Carsten Witt. 2011. Simplified Drift Analysis for Proving

Lower Bounds in Evolutionary Computation. Algorithmica 59, 3 (2011), 369–386.

[28] Pietro S. Oliveto and Carsten Witt. 2012. Erratum: Simplified Drift Analysis

for Proving Lower Bounds in Evolutionary Computation. ArXiv e-prints (2012).

arXiv:1211.7184

[29] Tiago Paixão, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenová. 2017.

Towards a Runtime Comparison of Natural and Artificial Evolution. Algorithmica

78, 2 (2017), 681–713.

[30] Amirhossein Rajabi and Carsten Witt. 2020. Evolutionary Algorithms with

Self-adjusting Asymmetric Mutation. In Proc. of PPSN XVI. Springer, 664–677.

[31] Amirhossein Rajabi and Carsten Witt. 2020. Self-Adjusting Evolutionary Algo-

rithms for Multimodal Optimization. In Proc. of GECCO. ACM, 1314–1322.

[32] Amirhossein Rajabi and Carsten Witt. 2021. Stagnation Detection with Ran-

domized Local Search. In EvoCOP. Springer, 152–168. Full version available at

http://arxiv.org/abs/2101.12054.

[33] Jonathan E. Rowe and Dirk Sudholt. 2014. The choice of the offspring population

size in the (1, 𝜆) evolutionary algorithm. Theor. Comput. Sci. 545 (2014), 20–38.

[34] Abraham Wald. 1944. On Cumulative Sums of Random Variables. Ann. Math.

Stat. 15, 3 (1944), 283 – 296.

[35] Carsten Witt. 2013. Tight Bounds on the Optimization Time of a Randomized

Search Heuristic on Linear Functions. Comb. Probab. Comput. 22, 2 (2013), 294–

318.

https://arxiv.org/abs/1211.7184
http://arxiv.org/abs/2101.12054

	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Outline

	2 Preliminaries
	2.1 The Cliff Function Class
	2.2 The Self-Adjusting (1 , ) EA
	2.3 Transition Probabilities

	3 Static Parameter Settings
	4 Self-Adjusting Offspring Populations are Efficient on Cliff
	4.1 Reaching the cliff
	4.2 Jumping down the cliff
	4.3 After jumping down the cliff
	4.4 Finding the global optimum
	4.5 Putting Things Together

	5 Conclusions
	References

