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The self-adjusting (1 + (λ, λ)) GA is the best known genetic algorithm for problems with a good fitness-

distance correlation as in OneMax. It uses a parameter control mechanism for the parameter λ that governs

the mutation strength and the number of offspring. However, on multimodal problems, the parameter control

mechanism tends to increase λ uncontrollably.

We study this problem for the standard Jumpk benchmark problem class using runtime analysis. The self-

adjusting (1 + (λ, λ)) GA behaves like a (1 + n) EA whenever the maximum value for λ is reached. This is

ineffective for problems where large jumps are required. Capping λ at smaller values is beneficial for such

problems. Finally, resetting λ to 1 allows the parameter to cycle through the parameter space. We show that

resets are effective for all Jumpk problems: the self-adjusting (1 + (λ, λ)) GA performs as well as the (1 + 1) EA

with the optimal mutation rate and evolutionary algorithms with heavy-tailed mutation, apart from a small

polynomial overhead.

Along the way, we present new general methods for translating existing runtime bounds from the (1 + 1) EA

to the self-adjusting (1 + (λ, λ)) GA. We also show that the algorithm presents a bimodal parameter landscape

with respect to λ on Jumpk . For appropriate n and k , the landscape features a local optimum in a wide basin

of attraction and a global optimum in a narrow basin of attraction. To our knowledge this is the first proof of

a bimodal parameter landscape for the runtime of an evolutionary algorithm on a multimodal problem.
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1 INTRODUCTION

1.1 Motivation

Evolutionary Algorithms as well as other Randomised Search Heuristics are parametrised algo-
rithms, that is, they have parameters such as the mutation rate, population size, and so on, that
the user needs to choose. The behaviour of Evolutionary Algorithms largely depends on these
parameter settings and it is well known that the efficiency of the optimisation process may de-
pend drastically on its parameters and the problem in hand [Doerr and Doerr 2020; Lengler 2020;
Lissovoi et al. 2020a, 2019]. Hence, parameter selection is an important field of study.

There are two main approaches to the parameter selection problem. The first approach, com-
monly known as parameter tuning, is to use static parameter values that have been deemed as good

parameter values by either theoretical analyses or by an initial set of experiments that aim to manu-
ally or automatically identify good parameter values for the problem settings in hand. The second
approach is known as parameter control; it uses non-static and self-adjusting parameter choices
aiming to identify parameter values that are optimal for the current state of the optimisation pro-
cess. The former approach has one disadvantage: during the optimisation process the optimal
parameter values may change, hence any static choice may have sub-optimal performance [Doerr
and Doerr 2020]. Parameter control mechanisms aim to identify such values on the fly without the
need of parameter tuning.

In continuous optimisation, parameter control such as step-size adaptation is vital to ensure
convergence to the optimum. In the discrete domain, parameter control is much less common and
we are just beginning to understand the benefits that parameter control can provide. Providing
a solid theoretical foundation for discrete self-adjusting algorithms was highlighted as a major
challenge and a hot topic in evolutionary computation by leading researchers in the field [Doerr
and Neumann 2021; Friedrich and Neumann 2017].

There has been an increasing interest in the theoretical study of parameter control mechanisms
in the latest years in order to understand how they work and when they perform better than
static parameter settings. One of the most successful implementations of parameter control
mechanisms is the self-adjusting (1 + (λ, λ)) Genetic Algorithm (GA) [Doerr and Doerr 2018;
Doerr et al. 2015], which is the fastest known unbiased genetic algorithm on the popular test
function OneMax(x ) :=

∑n
i=1 xi and has shown excellent performance on NP-hard problems

like MaxSat in both empirical [Goldman and Punch 2015] and theoretical studies [Buzdalov and
Doerr 2017]. Despite its success on these problems it has been shown via theoretical [Antipov
et al. 2019; Buzdalov and Doerr 2017] and empirical studies [Doerr et al. 2019; Foster et al. 2020;
Hevia Fajardo 2019] that the self-adjusting (1 + (λ, λ)) GA does not behave well on instances
with low fitness-distance correlation, that is, instances where the distance of search points to the
optimum has a low correlation to their fitness values.

Several of the above works identified that the issue lies in the parameter control mechanism
used to control the main parameter of the algorithm: the offspring population size λ. On functions
with low fitness-distance correlation, the algorithm can get stuck in situations where λ diverges
to its maximum value λ = n, and then performance deteriorates.

Goldman and Punch [2015] suggested to reset λ to 1 when λ = n but also restart the search
from a random individual. Buzdalov and Doerr [2017] proposed capping the value of λ depending
on the fitness-distance correlation of the problem in hand. Lastly, Bassin et al. [2021] proposed a
modification where the growth of λ is slowed down for long unsuccessful runs, while still letting
the algorithm increase the parameter indefinitely. It achieves this by resetting λ to the parameters
of its last successful generation after a certain number of unsuccessful generations and letting the
algorithm increase λ a bit more every time it is reset.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 4, Article 13. Pub. date: December 2022.



Theoretical and Empirical Analysis of Parameter Control Mechanisms 13:3

At the moment, it is not clear which of these modifications is the best choice. Previous research
is fragmented and most of the modifications proposed have only been studied empirically.

We make a step towards understanding the effects that different approaches for parameter
control in the self-adjusting (1 + (λ, λ)) GA have, by providing a comprehensive theoretical
analysis on the standard Jumpk and Trap benchmark functions (formally defined in Section 2.3).
Our main contribution is a comprehensive analysis of three variations of the original parameter
control mechanism on the self-adjusting (1 + (λ, λ)) GA showing theoretically and empirically
that all the variations studied can improve the performance of the original mechanism on
multimodal problems whilst not (or slightly) affecting its performance on simple problems such
as OneMax.

1.2 Contributions

We consider the standard Jumpk benchmark problem class, a class of multimodal problems on
which evolutionary algorithms typically have to make a jump to the optimum at a Hamming dis-
tance of k . The parameter k means that Jumpk has an adjustable difficulty and thus represents a
whole range from easy to difficult multimodal and even deceptive problems.

We first present a general method for obtaining upper bounds on the expected optimisation time
(the expected number of fitness evaluations to find a global optimum) of the original self-adjusting
(1 + (λ, λ)) GA, based on the fitness-level method, in Section 3. With it we obtain novel bounds
including bounds for unimodal functions and the Jumpk function class. Despite its simplicity, we
show that it gives tight bounds, up to lower-order terms, on Jumpk functions. Tightness is estab-
lished through lower bounds in Section 4. We show that the original self-adjusting (1 + (λ, λ)) GA
does not benefit from crossover on Jumpk functions given that it has the same asymptotic runtime
as the (1 + 1) Evolutionary Algorithm (EA) with standard parameters p = 1/n.

Subsequently, in Section 5 we analyse the performance change when λ is capped to a value
less than n. We suggest a generic choice for λmax := n/2 that can be advantageous on very hard
and deceptive functions without affecting its performance on simple problems. We also show that
capping λ can improve the performance of the algorithm on Jumpk , but its behaviour is highly
dependent on the choice of λmax, defying the point of using a parameter control mechanism. Addi-
tionally, with the generic choice of λmax := n/2 the self-adjusting (1 + (λ, λ)) GA is faster than the
original self-adjusting (1 + (λ, λ)) GA and the (1 + 1) EA with standard parameters for jump sizes
k ≤ logn and k > n/ logn.

Our analysis in Section 6 also provides insights into the parameter landscape, which describes
how parameter values relate to performance and which has recently emerged as a hot topic. The
celebrated work by Pushak and Hoos [2018] provided evidence that parameter landscapes of promi-
nent algorithms on well-known NP-hard problems like Satisfiability Problem (SAT), Mixed Integer
Programming (MIP) and Travelling Salesman Problem (TSP), are surprisingly benign, and param-
eters often have a unimodal response. Hall et al. [2019, 2020a] rigorously proved that parameters
of simple evolutionary algorithms on pseudo-Boolean test problems exhibit a unimodal landscape.
These works led to algorithm configurators that exploit unimodal structures [Hall et al. 2020b;
Pushak and Hoos 2020]. In sharp contrast to the above, we show that the parameter landscape
concerning the choice of λmax in the self-adjusting (1 + (λ, λ)) GA on Jumpk is bimodal. More pre-
cisely, we regard the time to reach the global optimum from a local optimum with λ at its maximum
value as this setting dominates the optimisation time. We give a rigorous but complex formula for
this expected time and use semi-rigorous arguments to identify optimal parameters. For appropri-
ate choices of n and k , the landscape features a local optimum located in a wide basin of attraction
and a global optimum hidden in a narrow basin of attraction. To the best of our knowledge this
is the first proof of a bimodal parameter landscape for the runtime of an evolutionary algorithm
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on a multimodal benchmark problem. The closest related work and only other such proof we are
aware of is for a unimodal problem: Lengler et al. [2021] showed that the parameter landscape for
the compact Genetic Algorithm on OneMax has a bimodal structure.

The above results are proven for a small and natural modification of the self-adjusting (1 + (λ, λ))
GA in which the offspring created in the mutation step are included in the replacement selection.
The advantage of this small change is that mutation creates search points at a possibly much larger
distance, and then the (1 + (λ, λ)) GA searches within a wide neighbourhood (in the mutation step)
and in a more local neighbourhood (after crossing the best mutant with its parent). Our analysis
of the parameter landscape in Section 6 emphasizes the possible performance benefits. For jump
sizes of k not too small, the best performance is obtained by choosing the parameter λmax as to
maximise the probability of finding the optimum during the mutation phase.

We also analyse the benefits of resetting λ in Section 7. With this strategy the algorithm is able
to traverse the parameter space, instead of getting stuck with a certain parameter, benefiting the
algorithm’s behaviour when encountering local optima. In particular, with a clever selection of the
update factor F we show that for Jumpk the runtime of the algorithm is only by a factor ofO (n2/k )
slower than the runtime of the (1 + 1) EA with optimal parameter choice of O ((en/k )k ) [Doerr
et al. 2017]. We remark that our choice of F does not depend on k , whereas the optimal mutation
rate for the (1 + 1) EA requires k to be known in advance.

Finally, in Section 8 we provide an experimental analysis to test how our theoretical results
translate to other fitness landscapes. The experimental results agree with our theoretical results
on Jumpk and show that the original self-adjusting (1 + (λ, λ)) GA (from Doerr and Doerr [2018])
has a poor performance on most problems tested compared against the other parameter control
variations. This demonstrates that our results translate to other common problem settings.

Parts of our theoretical results appeared in a preliminary version [Hevia Fajardo and Sudholt
2020]. This improved and extended manuscript contains new theoretical analyses on the deceptive
benchmark function Trap and significant new material has been added in Sections 6 (proof of a
bimodal parameter landscape) and 8 (empirical analysis).

1.3 Related Work

We give a brief review of existing theoretical studies of parameter control mechanisms, followed
by a review of theoretical studies on the (1 + (λ, λ)) GA and Jumpk .

Parameter control. There have been several examples where parameter control mechanisms
were proposed, along with proven performance guarantees.

Böttcher et al. [2010] considered the test function LeadingOnes(x ) :=
∑n

i=1

∏i
j=1 xi that counts

the number of consecutive ones at the start of the bit string. They showed that fitness-dependent
mutation rates can improve performance of the (1 + 1) EA on LeadingOnes by a constant fac-
tor. Badkobeh et al. [2014] presented an adaptive strategy for the mutation rate in the (1 + λ) EA
that, for all values of λ, leads to provably optimal performance on OneMax. Lässig and Sudholt
[2011] presented adaptive schemes for choosing the offspring population size in (1 + λ) EAs and the
number of islands in an island model. Doerr et al. [2019] showed that a success-based parameter
control mechanism is able to identify and track the optimal mutation rate in the (1 + λ) EA on One-
Max, matching the performance of the best known fitness-dependent parameter [Badkobeh et al.
2014]. Doerr et al. [2020] presented a self-adaptive mechanism for the mutation rate in the (1,λ) EA
that matches the asymptotic expected runtime on OneMax as in Badkobeh et al. [2014]. Mam-
brini and Sudholt [2015] adapted the migration interval in island models and showed that adap-
tation can reduce the communication effort beyond the best possible fixed parameter. Doerr et al.
[2021] proved that a success-based parameter control mechanism based on the 1/5th rule is able
to achieve an asymptotically optimal runtime on LeadingOnes. Lissovoi et al. [2020b] proposed a
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Generalised Random Gradient Hyper-Heuristic that uses a learning period of τ steps that can learn
to adapt the neighbourhood size of Random Local Search optimally during the run on Leading-
Ones. They proved that it has the best possible runtime achievable by any algorithm that uses the
same low level heuristics. This result required the correct selection of the learning period τ ; this
was later solved using a self-adjusting mechanism adapting the learning period having an optimal
asymptotic expected runtime on LeadingOnes [Doerr et al. 2018], OneMax and Ridge [Lissovoi
et al. 2020a]. In a similar manner, Lissovoi et al. [2019] proposed a hyper-heuristic that chooses be-
tween elitist and non-elitist heuristics that achieves the best known expected runtime for general
purpose randomised search heuristics on the problem class Cliffk . Rajabi and Witt [2020a] used a
self-adjusting asymmetric mutation that can provide a constant-factor speed-up on OneMax and
obtained the same asymptotic performance on the generalised OneMax function. Rajabi and Witt
[2020b] proposed a stagnation detection mechanism that raises the mutation rate when the algo-
rithm is likely to have encountered a local optimum. The mechanism can be added to any existing
EA; when added to the (1 + 1) EA, the SD–(1+1) EA has the same asymptotic runtime on Jumpk as
the optimal parameter setting. Subsequently, Rajabi and Witt [2021a, 2021b] added the stagnation
detection mechanism to the Randomised Local Search (RLS) obtaining a constant factor speed-up
over the SD–(1 + 1) EA on Jumpk . Doerr and Doerr give a comprehensive survey of theoretical
results on parameter control [Doerr and Doerr 2020].

The standard Jumpk benchmark problem class. The Jumpk function (formally defined in Sec-
tion 2.3) was designed as a multimodal benchmark function with adjustable difficulty [Droste et al.
2002] allowing to test the ability of an algorithm to jump over a fitness valley of size k . Cross-
ing this valley can be difficult for evolutionary algorithms. For the (1 + 1) EA using standard bit
mutation with the default mutation rate of p = 1/n it takes in expectation Θ(nk ) evaluations, for
k ≤ n/2. Because of this it has been commonly used in the theory of randomised search heuristics
to evaluate their performance on multimodal problems.

For the (1 + 1) EA [Doerr et al. 2017] showed that for Jumpk with jump sizek any mutation rate of
p ∈ [2/n,k/n] is exponentially faster (in k) than the standard choice of p = 1/n, with p = k/n being
the optimal choice. This showed that the traditional choice of mutation probability is not ideal and
as an alternative the authors proposed the mutation operator fmutβ that chooses the mutation rate
at random from a heavy-tailed distribution with exponent β > 1. This new algorithm achieved an
asymptotic runtime that is only by a factor kβ−1 larger than the optimal mutation rate. A similar
mutation operator has been proposed in Friedrich et al. [2018] that can outperform the fmutβ on
Jumpk , but only for large jump sizes.

The Jumpk function has also been used as an example where crossover can be beneficial. The
first work showing a benefit was Jansen and Wegener [2002] showing that a (μ + 1) GA applying
uniform crossover only with an unnaturally small crossover probability of pc = 1/(kn) optimises
Jumpk in expected time O (μn2k3 + 4k/pc ). For more natural crossover probabilities, Dang et al.
[2018] showed a runtime bound of O (nk−1 logn). This can be improved to O (n logn + 4k ) using
additional diversity mechanisms [Dang et al. 2016] and to O (n logn) using an island model with
majority vote [Friedrich et al. 2016]. Tailored hybrid genetic algorithms using a voting mecha-
nism can optimise Jumpk in expected time Θ(n) [Whitley et al. 2018] and tailored black-box algo-
rithms using a voting mechanism can even optimise (a slight variation of) Jumpk in expected time
Θ(n/ logn) [Buzdalov et al. 2015].

The (1 + (λ, λ)) GA. The (1 + (λ, λ)) GA was first proposed in Doerr et al. [2015] and studied
on OneMax. The (1 + (λ, λ)) GA using the recommended parameters from Doerr et al. [2015]
(derived from studying OneMax) first creates λ ≤ n mutants by a process similar to a standard bit
mutation with mutation rate λ/n (the only difference to standard GAs being that all mutants flip
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the same number of bits). Then it picks the best mutant and performs λ crossovers with the original
parent. A biased uniform crossover is used that independently picks each bit from the mutant with
probability 1/λ. If the best search point created by crossover is at least as good as the parent, the
former replaces the latter. Doerr et al. [2015] showed that for λ ∈ [ω (1),o(logn)] the (1 + (λ, λ)) GA
optimises OneMax in o(n logn) expected evaluations, breaking the Θ(n logn) barrier that applies
to all mutation-only algorithms [Lehre and Witt 2012]. Additionally, a fitness-dependent choice of

λ = �
√
n/(n − f (x ))� leads to an expected optimisation time of O (n) on OneMax. This highlights

that the parameter λ is key to the performance of the (1 + (λ, λ)) GA as it governs the number of
offspring, the mutation rate and the crossover bias.

To aid the complicated task of finding an optimal fitness-dependent choice, Doerr et al. [2015]
proposed the self-adjusting (1 + (λ, λ)) GA that uses the 1/5-th success rule to adjust λ. Doerr
and Doerr [2018] proved that the algorithm only needs O (n) expected function evaluations on
OneMax. The time ofO (n) is asymptotically optimal among all possible parameter choices for the
(1 + (λ, λ)) GA. This was the first success-based parameter control mechanism proven to reduce
the optimisation time of an algorithm by more than a constant factor, compared to optimal static
parameter settings.

Goldman and Punch [2015] reported excellent performance for the self-adjusting (1 + (λ, λ))
GA on random instances of the maximum satisfiability problem, and a similar setting was studied
by Buzdalov and Doerr [2017]. In the latter analysis it was shown that the algorithm is effective on
instances with good fitness-distance correlation. However, on instances with low fitness-distance
correlation the algorithm’s performance decays. Antipov et al. [2019] analysed the (1 + (λ, λ))
GA on LeadingOnes to better understand the behaviour on functions with low fitness-distance
correlation. They showed that the self-adjusting (1 + (λ, λ)) GA has the same asymptotic runtime
as the (1 + 1) EA, but the hidden constants seem to be very large.

In an attempt to avoid the risk of λ diverging to its maximum that comes when using the pa-
rameter control mechanism of the self-adjusting (1 + (λ, λ)) GA, Antipov et al. [2020] modified the
(1 + (λ, λ)) GA to sample λ from a heavy-tailed distribution each step of the optimisation instead of
being self-adjusted. For the correct selection of the exponent β ∈ (2, 3) and an upper bound for λ

of u > ln
1

3−β (n) in a power law distribution pow(β,u) it was shown that the algorithm can obtain
the same asymptotic runtime of O (n) on OneMax.

All studies mentioned so far used the standard parameter choice in the (1 + (λ, λ)) GA of λ ≤ n,

p = λ
n

and c = 1
λ

but the mutation rate and crossover bias can take any value in [0, 1] and the pop-
ulation size can be any integer number. Recently, Antipov et al. [2020] proved that a non-standard

parameter setting of λ = 1
n

√
n
k

k

and p = c =
√

k
n

can be useful on the multimodal function Jumpk ,

achieving a runtime of O (n(k+1)/2eO (k )k−k/2). However, this result can only be achieved by know-
ing the jump size k beforehand. To overcome this, Antipov and Doerr [2020] and Antipov et al.
[2021] proposed parameter settings that sample the parameters λ, p and c from power-law distri-
butions. With a non-trivial selection of the distributions these instance-independent algorithms
can obtain expected optimisation times that are only a small polynomial factor worse than the
aforementioned bound.

Note that the (1 + (λ, λ)) GA with non-standard parameters from Antipov et al. [2021] and
Antipov and Doerr [2020] does not use self-adjustment. Since we are interested in understanding
self-adjusting mechanisms, in our theoretical work we restrict our attention to the standard pa-

rameterisation of the (1 + (λ, λ)) GA, that is, we fix the relationship p = λ
n

and c = 1
λ

and aim to
self-adjust λ.

We are confident that the strategies studied here can be translated to other self-adjusting EAs.
Indeed, the resetting mechanism have been recently used by Hevia Fajardo and Sudholt [2021]
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for a (1, λ) EA with self-adjusting offspring population size λ, where the resetting mechanism was
essential for the algorithm to optimise the multimodal problem Cliff in O (n logn) evaluations,
which is faster than any static λ by at least a polynomial factor. Additionally, most self-adjusting
mechanisms proposed and analysed in the literature are mainly tailored towards optimising
unimodal problems. Hevia Fajardo and Sudholt [2021] and Rajabi and Witt [2021a, 2021b], warn
that these mechanisms tend to be problematic on multimodal problems because once a local
optimum is reached the success of previous generations does not give a good indication of what
parameters are needed to escape the local optimum. But, as we show in this work both the
capping and resetting mechanisms can help self-adjusting mechanisms deal with local optima
by avoiding divergent parameter values that can become harmful or let the mechanism cycle
through the possible parameter values.

2 PRELIMINARIES

We use runtime analysis to analyse the performance of the self-adjusting (1 + (λ, λ)) GA on
n-dimensional pseudo-Boolean functions f : {0, 1}n → R. We consider maximisation problems
only, but it is straightforward to translate any maximisation problem into a minimisation problem
by multiplying the function f by −1. We consider both the random number of fitness evaluations
T eval until a global optimum is found (also called optimisation time or runtime) as well as the
random number of generations T gen. The former reflects the total computational effort, whereas
the latter is more relevant when the execution and the generation of offspring can be parallelised
efficiently.

In the following, we writeH (x ,x∗) to denote the Hamming distance between bit strings x and x∗.
By B (n,p) we denote the binomial distribution with parameters n ∈ N and p ∈ [0, 1]. By log we
denote the logarithm of base 2. We say an event happens with overwhelming probability (w.o.p.)

if Pr(event) = 1 − 2−Ω(n) .

2.1 Self-Adjusting (1 + (λ, λ)) GA

The self-adjusting (1 + (λ, λ)) GA is a crossover-based evolutionary algorithm that uses a mutation
phase with a mutation rate higher than usual to assist exploration and a crossover phase as a repair
mechanism. During the mutation phase the parent is mutated λ times, using a mutation operator
called flip� (x ). It chooses � different bit positions in x uniformly at random and then it flips the
values in those bits to create the mutated bit string. Each mutation phase the variable � is sampled

only once from a binomial distribution B (n, λ
n

), causing all mutation offspring to have the same
Hamming distance to the parent. Afterwards, during the crossover phase the algorithm creates
λ offspring by applying a biased uniform crossover called crossc (x ,x ′) between the parent x and
the best offspring from the mutation phase x ′. The crossover operator works as follows: for each
bit position, it selects the bit value from x ′ with probability c = 1

λ
and from x otherwise. After

the crossover phase, the algorithm performs an elitist selection using only the offspring from the
crossover phase and the parent.

The algorithm adjusts λ every generation with a multiplicative update rule, where λ is multiplied
by a factor F 1/4 if there is no improvement in fitness and divided by F otherwise. We consider F > 1
as a constant independent of n unless mentioned otherwise. The parameter λ has an upper limit
λmax which is commonly set to n. We note that in lines 5 and 8 of Algorithm 1, following [Doerr
and Doerr 2018], we round λ to its closest integer (	λ�); that is, λ = 	λ
 if the decimal part of λ is
less than 1/2 and λ = �λ� otherwise.

In this work we use a small variation of the algorithm, shown in Line 10 of Algorithm 1, where
during the selection step the best offspring from the mutation phase is also considered. This
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ALGORITHM 1: The self-adjusting (1 + (λ, λ)) GA with maximum offspring population size λmax ≤ n.

1 Initialization: Sample x ∈ {0, 1}n uniformly at random (u.a.r.);

2 Initialize λ ← 1, p ← λ/n, c ← 1/λ;

3 Optimization: for t = 1, 2, . . . do
Mutation phase:

4 Sample � from B (n,p);

5 for i = 1, . . . , 	λ� do

6 Sample x (i ) ← flip� (x ) and query f (x (i ) );

7 Choose x ′ ∈ {x (1) , . . . ,x (λ) } with f (x ′) = max{ f (x (1) ), . . . , f (x (λ) )} u.a.r.;

Crossover phase:

8 for i = 1, . . . , 	λ� do

9 Sample y (i ) ← crossc (x ,x ′) and query f (y (i ) );

10 If {x ′,y (1) , . . . ,y (λ) }\{x } � ∅, choose y ∈ {x ′,y (1) , . . . ,y (λ) }\{x } with

f (y) = max{ f (x ′), f (y (1) ), . . . , f (y (λ) )} u.a.r.;

11 otherwise, set y := x ;

Selection and update step:

12 if f (y) > f (x ) then x ← y; λ ← max{λ/F , 1};
13 if f (y) = f (x ) then x ← y; λ ← min{λF 1/4, λmax};
14 if f (y) < f (x ) then λ ← min{λF 1/4, λmax};

modification has been suggested before in Goldman and Punch [2015] and Pinto and Doerr [2018]
as a way to improve the performance of the (1 + (λ, λ)) GA. We believe (and tacitly take for granted)
that this change does not invalidate previous theoretical runtime guarantees on problems such as
OneMax [Doerr and Doerr 2018] and LeadingOnes [Antipov et al. 2019]. For OneMax, Doerr and
Doerr [2018] confirm this fact without proof. Analyses on OneMax and LeadingOnes were based
on drift analysis, and the drift can only increase if additional opportunities for improvements are
considered. Comparing our empirical results on OneMax to the ones from Doerr et al. [2015] and
empirical tests on LeadingOnes show that this is the case: the modification improves the runtime
on OneMax and LeadingOnes by a small constant factor on all problem sizes tested.

Pinto and Doerr [2018] presented additional refinements of the (1 + (λ, λ)) GA that they call
implementation-aware; these can save unnecessary evaluations and decrease some runtime results
by constant factors. We only consider the aforementioned change with respect to the selection
step for simplicity, and since we are interested in larger performance differences.

Considering the best offspring from the mutation phase is particularly helpful when the algo-
rithm needs to make large jumps, as when encountering local optima. In fact, in Section 4 and 6
we show that for large jumps the crossover phase is not very helpful for reaching a higher fit-
ness level, because the crossover phase tends to search near the current parent while the large
mutations during the mutation phase can more easily jump out of local optima.

2.2 The (1 + 1) EA and (1 + n) EA

The (1+ λ) EA (Algorithm 2) starts by sampling a random solution x ∈ {0, 1}n . In each generation
the algorithm creates λ offspring from the parent x using standard bit mutation with probability
p ∈ [0, 1] and selects the offspring with the highest fitness (breaking ties u.a.r.), which replaces the
parent if it has the same or better fitness. If λ = 1 the algorithm becomes the simplest EA, that is,
the (1 + 1) EA. Another special case is the (1 + n) EA, that uses an offspring population size λ = n
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ALGORITHM 2: (1 + λ) EA.

1 Initialization: Choose x ∈ {0, 1}n uniformly at random (u.a.r.);

2 Optimization: for t ∈ {1, 2, . . . } do

3 Mutation: for i ∈ {1, . . . , λ} do

4 Create y′i ∈ {0, 1}
n by flipping each bit in x independently with probability p.;

5 Selection: Choose y ∈ {y′1, . . . ,y
′
λ
} with f (y) = max{ f (y′1), . . . , f (y′

λ
)} u.a.r.;

6 if f (y) ≥ f (x ) then x ← y;

2.3 Fitness Functions

The Jumpk benchmark problem class is a class of unitation functions, that is, functions that only
depend on the number of 1-bits in a bit string, denoted as |x |:

Jumpk (x ) :=
⎧⎪⎨⎪⎩n − |x | if n − k < |x | < n,

k + |x | otherwise.

We restrict ourselves to parameters k ≥ 2 as otherwise the function essentially becomes One-
Max. For k ≥ 2 the Jumpk function increases its fitness value with the first n − k 1-bits in the
bit string, reaching a set of local optima that all have n − k 1-bits. Larger numbers of 1-bits leads
to a valley that contains the lowest fitness values in all the search space. The fitness value in the
valley decreases when adding 1-bits, with the minimum fitness neighboring the global optimum.
The optimum is the bit string 1n .

The Trap function is described by:

Trap(x ) :=
⎧⎪⎨⎪⎩ |x | if |x | � 0,

n + 1 otherwise.

Similar to the Jumpk function, in the Trap function, the fitness value increases with the number
of 1-bits, guiding hill climbing algorithms to the local optimum 1n . However, the global optimum 0n

is at the maximum Hamming distance from the local optimum. For comparison-based algorithms
the Trap function is equivalent to Jumpn .

2.4 Fitness-Level Method

The fitness-level method [Wegener 2002] is a general analysis method for upper bounds on the
expected optimisation time. We describe it in the context of the (1 + 1) EA. The method uses so-
called f -based partitions, which is a partition of the search space {0, 1}n into sets A1, . . . ,Am+1 for
somem ∈ N where all search points Ai are strictly worse than all search points in Ai+1, and Am+1

exclusively contains all global optima. Each of these sets needs to be left at most once. Suppose
that we know that for every search point x ∈ Ai , the probability of creating a search point in a
higher fitness-level set is at least si , for some expression si > 0. Then the expected time for leaving
set Ai is at most 1/si . Since every fitness level has to be left at most once before reaching Am+1

and once Am+1 is reached a global optima is found due to its definition, the expected optimisation
time of the (1 + 1) EA is at most

∑m
i=1 1/si .

The fitness-level method is a simple and versatile method in its own right, and it allows re-
searchers to translate bounds on the runtime of the simple (1 + 1) EA to other elitist algorithms.
This has been achieved for parallel evolutionary algorithms [Lässig and Sudholt 2014b], ant colony
optimisation [Gutjahr 2008; Neumann et al. 2009], and particle swarm optimisation [Sudholt and
Witt 2010]. It further gives rise to tail bounds [Witt 2014] and lower bounds [Doerr and Kötzing
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2021; Sudholt 2013], and the principles extend to non-elitist algorithms as well [Corus et al. 2018;
Doerr and Kötzing 2021].

Fitness levels may contain search points of different fitness. In the special case where each set
Ai contains search points with only one fitness value the partition is called a canonical partition.

2.5 Useful Inequalities

In this section, for the readers’ convenience, we compile well-known inequalities that we will use.

Lemma 2.1.

(a) For all x ≥ −1 and r ≥ 1, (1 + x )r ≥ 1 + rx .

(b) For all x ∈ [0, 1] and r ≥ 1, (1 − x )r ≤ 1
1+r x

.

Part (a) is well known as Bernoulli’s inequality. Part (b) was shown in Rowe and Sudholt [2014].
Also, we use the following inequalities, taken from Doerr [2020, Corollary 1.4.6].

Lemma 2.2. For all r ≥ 1 and 0 ≤ x ≤ r , (1 − x
r

)r ≤ e−x ≤ (1 − x
r

)r−x .

3 FITNESS-LEVEL UPPER BOUNDS FOR THE SELF-ADJUSTING (1 + (λ, λ)) GA

The self-adjusting (1 + (λ, λ)) GA has only been analysed theoretically on easy unimodal functions
like OneMax [Doerr and Doerr 2018] and LeadingOnes [Antipov et al. 2019] as well as random
satisfiability instances [Buzdalov and Doerr 2017].1 Despite these analyses we do not have a clear
understanding of its behaviour on other problem settings, especially when it encounters local
optima.

In this section we give a new general method to find upper bounds for the runtime of the self-
adjusting (1 + (λ, λ)) GA using previously known runtime bounds from the (1 + 1) EA. It is based on
the observation that, when λ hits its maximum value of λ = n, the algorithm temporarily performs
n standard bit mutations and thus simulates a generation of a (1 + n) EA.

The following theorem gives a fitness-level upper bound tailored to the self-adjusting
(1 + (λ, λ)) GA.

Theorem 3.1. Given an arbitrary f -based partition A1, . . . ,Am+1. Let d be the number of non-

optimal fitness values, F > 1 constant, and si be a lower bound for the probability that the (1 + 1) EA

with mutation probability 1/n creates a search point in a higher fitness-level set from any search point

in fitness level Ai . Then for the self-adjusting (1 + (λ, λ)) GA we have

E(T eval) ≤ O (dn) + 2

m∑
i=1

1

si
;

E(T gen) ≤ ⌈
4 logF (n)

⌉
+ 6d +

1

n

m∑
i=1

1

si
.

To prove Theorem 3.1, we analyse the time the algorithm spends in generations with λ < n and
those in generations with λ = n.

In the following, we refer to a generation that improves the current best fitness as successful

and otherwise as unsuccessful. We show that a logarithmic number of unsuccessful generations is
sufficient to reach the maximum λ value.

Lemma 3.2. Let x andy be the parent and offspring, respectively, as in Algorithm 1. For all values of

F := F (n) > 1, initial λ value λinit ≥ 1 and target value λnew ≤ λmax, the following holds. If in every

1The (1 + (λ, λ)) GA with static parameter choices has also been studied on multimodal functions but only using non-

standard parameter choices that do not translate to the self-adjusting mechanism.
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generation f (y) ≤ f (x ), the self-adjusting (1 + (λ, λ)) GA needs at most �4 logF ( λnew

λinit
)� generations to

grow λ from λinit to at least λnew. During these generations the algorithm makes at most 4F 1/4

F 1/4−1
· λnew

evaluations.

For constant F > 1 the number of generations is O (log λnew) and the number of evaluations is

O (λnew).

Proof. Starting with an offspring population size of λinit, after i unsuccessful generations the

offspring population size is λinit · F i/4. For i := �4 logF ( λnew

λinit
)�, we get an offspring population size

of

λinit · F
�4 logF ( λnew

λinit
)�/4 ≥ λinit · F

logF ( λnew
λinit

)
= λnew.

The number of unsuccessful generations needed is thus at most⌈
4 logF

(
λnew

λinit

)⌉
.

Using �λinit · F i/4� ≤ 2λinit · F i/4, during these generations, the number of evaluations is at most

�4 logF (λnew/λinit )�−1∑
i=0

2
⌈
λinit · F i/4

⌉
≤ 4λinit

�4 logF (λnew/λinit )�−1∑
i=0

(
F 1/4

) i

= 4λinit ·
(F 1/4) �4 logF (λnew/λinit )� − 1

F 1/4 − 1

≤ 4λinit ·
(F 1/4)4 logF (λnew/λinit )+1

F 1/4 − 1

= 4λinit ·
F 1/4 · λnew/λinit

F 1/4 − 1
=

4F 1/4

F 1/4 − 1
· λnew.

For constant F > 1, the number of generations simplifies to �4 logF (λnew/λinit)� ≤ �4 logF λnew� =
�4 log(λnew)/ log(F )� = O (log λnew) and the number of evaluations simplifies to 4F 1/4

F 1/4−1
· λnew =

O (λnew). �

Now we bound the number of generations in which the self-adjusting (1 + (λ, λ)) GA operates
with λ < n. To do so, we take into account that the algorithm does not need to increase from λinit

every time since we only decrease λ by a factor F each time we find an improvement.

Lemma 3.3. Let F := F (n) > 1, λmax ≤ n, and d be the number of non-optimal fitness values of an

arbitrary fitness function. The maximum number of generations in which the self-adjusting (1 + (λ, λ))

GA uses λ < λmax is at most �4 logF (λmax)� + 5d . These generations lead to at most 2dλmax+
4F 1/4λmax

F 1/4−1
evaluations. For constant F > 1 the number of evaluations is O (dλmax).

Proof. In every successful generation, λ is decreased to max{1, λ/F } and otherwise it is in-
creased to min{λmax, λ · F i/4}.

We use the accounting method [Cormen et al. 2009, Chapter 17] to account for all generations
with λ < λmax. The basic idea is to create a fictional bank account to which operations are being
charged. Some operations are allowed to pay excess amounts, while others can take money from
such accounts to pay for their costs. Provided that no fictional account gets overdrawn the total
amount of money paid bounds the total cost of all operations.

We start with a fictional bank account and pay costs of �4 logF (λmax)�, since that is the maximum
number of consecutive unsuccessful generations before reaching λ = λmax (Lemma 3.2).

In a successful generation, we pay costs of 1 to cover the cost of the generation, and deposit an
additional amount of 4 to the fictional bank account, which will be used to pay for 4 unsuccessful
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generations needed to increase λ to its original value. Unsuccessful generations that increase λ
may withdraw 1 from the fictional account and pay for the cost of this generation. Unsuccessful
generations where λ = λmax are not charged since they are not counted.

We now need to prove that the fictional bank account is never overdrawn. For any point in
time, the number of generations where λ increases is bounded by T inc ≤ �4 logF (λmax)� + 4T dec

whereT inc andT dec are the number of generations increasing and decreasing λ, respectively. This
holds by Lemma 3.2 and the fact that one successful generation that decreases λ compensates for
4 unsuccessful generations that may increase λ. Considering the initial payment of �4 logF (λmax)�
and transactions for each generation, the current balance is⌈

4 logF (λmax)
⌉ −T inc + 4T dec ≥ 0,

that is, the account is never overdrawn. The number of generations with λ < λmax is thus bounded
by the sum of all payments. There can only bed successful generations, hence the sum of payments
is at most �4 logF (λmax)� + 5d .

It remains to bound the number of evaluations. Since we initialise with λ = 1, there must be
�4 logF (λmax)� generations t1, t2, . . . such that during generation ti , we have λ ≤ �F i/4�. From
Lemma 3.2, we know that during these �4 logF (λmax)� generations, the algorithm uses at most
4F 1/4

F 1/4−1
· λmax evaluations. Additionally, in the other at most 5d possible generations, the maximum

number of evaluations per generation is bounded by 2λmax. Therefore the algorithm uses at most

2dλmax +
4F 1/4λmax

F 1/4−1
evaluations with an offspring population size λ < λmax. For constant F > 1, the

number of evaluations simplifies to 2dλmax +
4F 1/4λmax

F 1/4−1
= O (dλmax). �

With Lemma 3.3 now we have the tools necessary to analyse the runtime of Algorithm 1.

Proof of Theorem 3.1. Owing to Lemma 3.3, we can focus on bounding the time spent in gen-
erations with λ = n. In these generations, the mutation rate is p = λ/n = 1 and thus all bits are
flipped during mutation. When the current search point is x , mutation thus produces its binary
complement, x . The crossover phase uses a crossover bias of c = 1/λ, which means that each bit is
independently taken from the mutant x with probability 1/λ and otherwise it is taken from x . This
is equivalent to a standard bit mutation with mutation probability of 1/λ. Given that λ = n, during
the crossover phase the algorithm creates n independent offspring using standard bit mutation.
The crossover phase is then equivalent to the output of a (1 + n) EA.

For each fitness level we calculate the number of generations the self-adjusting (1 + (λ, λ)) GA
spends on this level while λ = n and the self-adjusting (1 + (λ, λ)) GA essentially simulates a
(1 + n) EA. (We pessimistically ignore the fact that such a situation may not be reached at all;
especially on easy problems, λ may not hit the maximum value before the optimum is found.)

We argue as in Lässig and Sudholt [Lässig and Sudholt 2014a, Theorem 1] to derive a fitness-
level bound for the (1 + n) EA. The probability that there is one of n offspring that finds a better
fitness level is at least

1 − (1 − si )n ≥ 1 −
(

1

1 + sin

)
=

sin

1 + sin
,

where the inequality holds by Lemma 2.1 (b). The expected number of generations to leave Ai

using λ = n is at most 1+si n
si n

. Adding the generations with λ = n over all fitness levels and the

generations spent with λ < n, we get

E(T gen) ≤ ⌈
4 logF (n)

⌉
+ 5d +

m∑
i=1

(
1 +

1

sin

)
≤ ⌈

4 logF (n)
⌉
+ 6d +

1

n

m∑
i=1

1

si
,
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where the last step used m ≤ d , that is, the number of fitness levels is bounded by the number of
fitness values.

By Lemma 3.3, the number of evaluations used with λ < n is O (dn) when F > 1 is a constant.
Since with λ = n each generation leads to 2n evaluations, multiplying the above bound yields the
claimed bound on the number of evaluations. �

We show how to apply Theorem 3.1 to obtain novel bounds on the expected optimisation time
of the self-adjusting (1 + (λ, λ)) GA, including the Jumpk function class.

Theorem 3.4. The expected optimisation time E(T eval) of the self-adjusting (1 + (λ, λ)) GA with

F > 1 constant is at most

(a) E(T eval) = O (nn/|OPT|) and E(T gen) = O (nn−1/|OPT|) on any function with a set OPT of

global optima,

(b) E(T eval) = O (dn) and E(T gen) = O (d+ logn) on unimodal functions (functions for which every

non-optimal search point has a strictly better Hamming neighbour) with d + 1 fitness values,

(c) E(T eval) ≤ (1 + o(1)) · 2nk (1 − 1/n)−n+k and E(T gen) ≤ (1 + o(1)) · 2nk−1 (1 − 1/n)−n+k on

Jumpk with k ≥ 3.

Proof. For the general upper bound, we use a fitness level partition with A1 containing
all non-optimal fitness values and A2 containing the set OPT, then the number of fitness lev-
els is m + 1 = 2. We use the corresponding success probability si ≥ |OPT|/nn . With this
we bound

∑m
i=1

1
si
= O (nn/|OPT|). All functions have d < 2n non-optimal fitness values and

nn/|OPT| ≥ (n/2)n , therefore the term O (dn) can be absorbed.
For unimodal functions, we use a canonical f -based partition and success probabilities of

si ≥ 1/n · (1 − 1/n)n−1 ≥ 1/(en) where the last inequality holds by Lemma 2.2. This yields

E(T eval) ≤ O (dn) + 2
∑d

i=1 en = O (dn). For the expected number of generations, we get E(T gen) ≤
�4 logF (n)� + 6d + 1

n

∑d
i=1 en = O (d + logn).

For Jumpk functions with k ≥ 3 any individual that is not a local or global optimum can find an
improvement by increasing or decreasing the number of 1-bits. This yields success probabilities
of at least (n − i )/(en) for all search points with 0 ≤ i < n − k ones and of at least i/(en) for all
search points with n − k < i < n ones. For search points with n − k ones, a standard bit mutation
can jump to the optimum by flipping the correct k 0-bits and not flipping any other bit. This has a
probability of sn−k = (1/n)k (1 − 1/n)n−k . Hence,

E(T eval) ≤ O (n2) + 2

n−k−1∑
i=0

en

n − i + 2

n−1∑
i=n−k+1

en

i
+ 2nk

(
1 − 1

n

)−n+k

= O (n2) + 2nk
(
1 − 1

n

)−n+k

.

As k ≥ 3 the second term is Ω(n3) and the first term constitutes a smaller-order term, yielding

E(T eval) = (1 + o(1)) · 2nk
(
1 − 1

n

)−n+k

. �

In Theorem 3.1 as in most of the theoretical bounds proven in other studies for the (1 + (λ, λ))
GA, we focus only on the offspring from the crossover phase. But as mentioned before we argue
that considering also the offspring from the mutation phase can improve the performance of the
(1 + (λ, λ)) GA. To exemplify this we consider the Trap function which is the most difficult problem
for the standard (1 + 1) EA having an expected optimisation time of Θ(nn ) [Droste et al. 2002]. In
contrast, when considering the offspring from the mutation phase, the self-adjusting (1 + (λ, λ))
GA is able to optimise the Trap function using only O (n) evaluations.
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Theorem 3.5. Let F > 1 be a constant. The expected optimisation time (in terms of fitness evalua-

tions) of the self-adjusting (1 + (λ, λ)) GA on the Trap function is O (n).

Proof. We divide the proof in two parts, the OneMax phase, and the trap phase. While in
the OneMax phase, if the optimum is not found the algorithm behaves as on OneMax. From
Theorem 9 in Doerr and Doerr [2018], we know that the OneMax phase takes O (n) evaluations.

Once it reaches the local optimum (trap phase), within at most �4 logF (n)� unsuccessful gener-
ations λ increases to λ = n. This then implies p = 1 and the algorithm creates the global optimum
during the mutation phase with probability 1. Therefore, the trap phase is solved inO (logn) gener-
ations with probability 1. During these generations, the algorithm usesO (n) evaluations, as shown
in Lemma 3.2. Adding the optimisation times of both phases proves the claim. �

We want to point out that in this example the algorithm benefits from the global optimum be-
ing exactly at Hamming distance n from the local optimum. Its purpose is to illustrate the possible
benefits of considering the offspring from the mutation phase during selection. This inspired us
to consider the strategies in the following sections, where we show more extensively the improve-
ments that considering the offspring from the mutation phase during selection can give to the
algorithm.

4 CROSSOVER DOES NOT BENEFIT THE SELF-ADJUSTING (1 + (λ, λ)) GA ON Jumpk

We now show that the bound for the self-adjusting (1 + (λ, λ)) GA with standard parameter settings
on Jumpk from Theorem 3.4 (c) is asymptotically tight. This implies that unless k is very small the
self-adjusting (1 + (λ, λ)) GA is no more efficient on Jumpk than the (1 + 1) EA and less efficient
than other GAs using crossover [Dang et al. 2018, 2016; Jansen and Wegener 2002].

Theorem 4.1. Let F > 1 be a constant. The expected optimisation time (in terms of fitness evalu-

ations) of the self-adjusting (1 + (λ, λ)) GA on the Jumpk function with 4 ≤ k ≤ (1 − ε )n/2, for any

constant ε > 0, is at least

(1 − o(1)) · 2nk
(
1 − 1

n

)−n+k

.

We first show upper and lower bounds on the probability that the (1 + (λ, λ)) GA finds any
particular target search point x∗ during one mutation phase. Even though we only need the upper
bounds in this section, the lower bounds will be useful later on.

Lemma 4.2. For every current search point x , every target search point x∗ and every current pa-

rameter λ, let pλ
mut (x ,x

∗) be the probability that the (1 + (λ, λ)) GA creates x∗ during the mutation

phase of one generation.

If x∗ = x and λ = n, pλ
mut (x ,x

∗) = 1.

If x∗ � x and λ = n, pλ
mut (x ,x

∗) = 0.

If x∗ ∈ {x ,x } and λ < n,

pλ
mut (x ,x

∗) = (λ/n)H (x,x ∗ ) (1 − λ/n)n−H (x,x ∗ ) .

Otherwise,

	λ

2

(λ/n)H (x,x ∗ ) (1 − λ/n)n−H (x,x ∗ ) ≤ pλ
mut (x ,x

∗) ≤ �λ� (λ/n)H (x,x ∗ ) (1 − λ/n)n−H (x,x ∗ ) .

If H (x ,x∗) ∈ {2, . . . ,n − 2}, the factor 1/2 in the above expression can be replaced by 1 −O (1/n).

From the transition probabilities, the term (λ/n)H (x,x ∗ ) (1 − λ/n)n−H (x,x ∗ ) equals the probability
of a standard bit mutation with mutation probability λ/n creating x∗ from x . If x∗ � {x ,x }, the
offspring population of λ amplifies this probability by a factor within [	λ
/2, �λ�]. If x∗ ∈ {x ,x },
the (1 + (λ, λ)) GA does not benefit from its offspring population at all.
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Proof of Lemma 4.2. The algorithm needs to sample � = H (x ,x∗), in order to find x∗ during
the mutation phase. The probability of this event is

Pr (� = H (x ,x∗)) =

(
n

H (x ,x∗)

)
(λ/n)H (x,x ∗ ) (1 − λ/n)n−H (x,x ∗ ) . (1)

In the special case where λ = n then the mutation probability p = 1 and � = n, hence if x = x
the target search point is created with probability 1 and if x∗ � x the target search point is created

with probability 0. If λ < n and x∗ ∈ {x ,x },
(

n
H (x,x ∗ )

)
= 1 and the claim for this case follows from (1)

as all λ mutants will create x∗ for the right choice of �.
Otherwise, the (1 + (λ, λ)) GA also needs to flip the correct bits during the mutation phase. Since

there are
(

n
H (x,x ∗ )

)
possible ways to flip the bits the probability that one offspring flips the correct

bits is
(

n
H (x,x ∗ )

)−1
. This gives us the following probability of finding x∗ during 	λ� mutations (the

algorithm creates 	λ� offspring), conditional on � = H (x ,x∗):

Pr (x∗ | � = H (x ,x∗)) = 1 −
(
1 − 1/

(
n

H (x ,x∗)

)) 	λ �
.

Using the estimate from Lemma 2.1 (a) and 	λ� ≤ �λ� this is bounded from above by

�λ�/
(

n

H (x ,x∗)

)

and bounded from below using Lemma 2.1 (b) and 	λ� ≥ 	λ
 by

	λ
/
(

n
H (x,x ∗ )

)
1 + 	λ
/

(
n

H (x,x ∗ )

) ≥ 	λ
/
(

n
H (x,x ∗ )

)
2

, (2)

where the last inequality follows from x∗ � {x ,x } yielding
(

n
H (x,x ∗ )

)
≥ n and thus 1 + 	λ
/n ≤ 2.

Since
pλ

mut (x ,x
∗) = Pr (x∗ | � = H (x ,x∗)) Pr (� = H (x ,x∗)) ,

multiplying (1) with the above bounds on Pr(x∗ | � = H (x ,x∗)) and observing that the binomial
coefficients cancel completes the proof.

If H (x ,x∗) ∈ {2, . . . ,n − 2} we bound the denominator in (2) using
(

n
H (x,x ∗ )

)
= Ω(n2) and thus

1 + 	λ
/
(

n
H (x,x ∗ )

)
≤ 1 +O (1/n). This yields a factor of 1/(1 +O (1/n)) = 1 −O (1/n). �

The following lemma gives an upper bound on the probability of hitting any specific search
point x∗ during one crossover phase of the (1 + (λ, λ)) GA. For the original (1 + (λ, λ)) GA that
does not consider mutants for selection, Lemma 4.3 bounds the probability of hitting x∗ in one
generation.

Lemma 4.3. For every current search point x , every target search point x∗ and every λ ∈ [1,n], the

probability that the (1 + (λ, λ)) GA creates x∗ during the crossover phase of one generation is at most

	λ�2
(

1

n

)H (x,x ∗ ) (
1 − 1

n

)n−H (x,x ∗ )

.

Note that the probability bound may be larger than 1 for very small H (x ,x∗) and large λ. Before
diving into the proof, we give the main idea here. Recall that in every generation, the (1 + (λ, λ)) GA
performs 	λ� mutations with a radius of � (drawn from a binomial distribution with parameters
λ/n and n) and 	λ� crossover operations with the best mutant. All mutants are chosen uniformly
at random from the Hamming ball of radius � around x . However, the following selection of the
best mutant does not preserve uniformity as some offspring on said Hamming ball may have a
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higher fitness than others. Hence, the crossover operations will affect particular regions of the
search space more than others. While this is a helpful algorithmic concept (in a sense that this
makes the (1 + (λ, λ)) GA solve OneMax in expected time O (n) [Doerr et al. 2015]), it makes it
hard to analyse what search points will be generated during crossover as it depends on the fitness
function in hand.

As a solution, we borrow an idea similar to non-selective family trees by Witt [2006] and Lehre
and Yao [2009] that was also used in previous analyses of the (1 + (λ, λ)) GA [Doerr and Doerr
2018, Proof of Proposition 1]. We consider a variant of the (1 + (λ, λ)) GA that we call non-selective

(1 + (λ, λ)) GA: instead of performing 	λ� crossovers with the best mutant, it performs 	λ�
crossovers for all of the 	λ� mutants. This results in 	λ�2 offspring generated from crossover, in
addition to 	λ� mutants. Since the offspring created by the original (1 + (λ, λ)) GA form a subset of
the offspring generated by the non-selective (1 + (λ, λ)) GA, the probability of the original (1 + (λ,
λ)) GA creating x∗ in one crossover phase is bounded by the probability of the non-selective (1 + (λ,
λ)) GA creating x∗ during crossover. Owing to the absence of selection, the output of the 	λ�2 cross-
over operations is independent of the fitness and we obtain a probability bound that only depends
on the Hamming distance H (x ,x∗).

Proof of Lemma 4.3. We argue similarly as the proof of Proposition 1 in Doerr and Doerr [2018].
Fix an offspring y created by the non-selective (1 + (λ, λ)) GA. The process for creating y can
be described as follows. The algorithm first picks a random value of � according to a binomial
distribution with parametersn and λ/n, and then flips � bits chosen at random to create a mutant x ′.
The creation of x ′ can alternatively be regarded as a standard bit mutation with a mutation rate
of λ/n. To create y, each bit is independently taken from x ′ with probability 1/λ. Hence, each
bit yi in y attains the value 1 − xi with probability 1/n, and it attains value xi with probability
1 − 1/n, independently from all other bits. Hence, the creation of y can be described as a standard
bit mutation with mutation rate 1/n.

The probability of y = x∗ is thus (1/n)H (x,x ∗ ) (1 − 1/n)n−H (x,x ∗ ) . Note that different offspring
are not independent as they use the same random value of �, and every batch of 	λ� crossover
operations is derived from the same mutant. A union bound over all 	λ�2 offspring allows us to
conclude, despite these dependencies, that the probability of one offspring generating x∗ is at most

	λ�2
(

1

n

)H (x,x ∗ ) (
1 − 1

n

)n−H (x,x ∗ )

. �

Now we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. By standard Chernoff bounds, the probability that the initial search

point has at most (1 + ε )n/2 ones is 1 − 2−Ω(n) . We assume this to happen and note that then the
algorithm will never accept a search point in the fitness valley of n − k < i < n ones.

Let T local be the random number of generations until any search point in the local optimum
with n −k ones or the global optimum is reached for the first time. We bound E(T local) from above
as follows2. This can be done using Theorem 3.1 as in Theorem 3.4 (c), but with a non-canonical
f -based partition where the best fitness level includes the local optimum and the global optimum.
This yields E(T local) = O (n) generations.

2The (1 + (λ, λ)) GA optimises OneMax in expected time O (n), but it is not immediately obvious how to translate the

analysis to the OneMax-like parts of Jumpk . Note that the (1 + (λ, λ)) GA may overshoot the local optimum and then the

analysis on OneMax breaks down. We suspect this can be fixed with small modifications, but for now we show a more

obvious bound as this is sufficient for our purposes.
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By Lemmas 4.3 and 4.2, before we reach the local optimum a generation with parameter λ
reaches the optimum with probability at most

�λ� (λ/n)k (1 − λ/n)n−k + 	λ�2n−k := p

since the current search point has Hamming distance at least k from the optimum.
We claim that p = O (1/n2) by showing that both summands are in O (1/n2). Recalling k ≥ 4,

we have 	λ�2n−k ≤ n2−k = O (1/n2). To bound the first summand �λ� (λ/n)k (1 − λ/n)n−k , we use
�λ� ≤ n and the fact that the maximum of x �→ xk (1 − x )n−k in the interval [0, 1] is attained for
x := k/n. Thus, the first summand is at most n(k/n)k (1 − k/n)n−k . The function k �→ (k/n)k is
non-increasing in the interval [4,n/e], thus it is bounded byO (n−4) for all k ∈ [4,n/e]. For k > n/e
we recall k ≤ n/2 and observe that (1 − k/n)n−k ≤ (1 − 1/e )n/2 and then the first summand is
exponentially small. In all cases, p = O (1/n2).

By a union bound the probability that the global optimum is found in t steps is at most tp. Then
the probability that the global optimum is found during the first T local steps is at most

∞∑
t=0

Pr(T local = t ) · tp = p · E(T local) = O (1/n).

Now assume that the local optimum has been reached and λ < λmax = n. Since the optimum is the
only search point with a strictly larger fitness, λ will be increased in every generation unless the
optimum is found. By Lemma 3.2, there are at most �4 logF (n)� generations before λ has increased
to λmax. By the same arguments as above, the probability that the optimum is found during this
time is O ((logn)/n2).

Once λ = λmax = n has been reached, mutation always creates search points with k ones (i.e.
mutation will never find the optimum) and crossover boils down to a standard bit mutation with
mutation rate 1/n. Then the probability of one crossover creating the optimum is (1/n)k (1−1/n)n−k

and the expected number of crossover operations for hitting the optimum is thus

nk ·
(
1 − 1

n

)−n+k

.

Since every batch of λ crossover operations is preceded by λ (useless) fitness evaluations during
mutation, this adds a factor of 2 to the above lower bound. The proof is completed by noting that,
after adding up all failure probabilities, this case is reached with probability at least 1 − O (1/n)
and E(T ) ≥ E(T | A)Pr(A), where A is the event that we do not reach the global optimum before
reaching the local one. �

5 CAPPING λ

A simple solution to prevent λ from growing to large values is to constrain it. Buzdalov and
Doerr [2017] first suggested this strategy, showing that it benefits the algorithm when optimising
instances of the maximum satisfiability problem with weak fitness-distance correlation. Similarly,
in Bassin et al. [2021] the authors showed empirically that capping λ at logn can improve the per-
formance on linear functions with random weights. Antipov et al. [2019] capped λ to n/2, arguing
that since p = λ/n larger values of λ would use mutation probabilities larger than 1/2 which are
considered ill-natured because mutation would create offspring that on average are further away
from the parent than the average search point. In this section we explore its benefits.

5.1 Self-Adjusting (1 + (λ, λ)) GA Capping λ

In previous sections we have shown that the self-adjusting (1 + (λ, λ)) GA can increase λ to its
maximum in only a logarithmic number of steps. This indicates that the algorithm may increase
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the parameter in a difficult part of the optimisation and afterwards it could end up with a too large
population size, affecting performance. In Algorithm 1 the hyper-parameter λmax prevents such a
problem by capping the value of λ to any value λmax ∈ {1, . . . ,n}, allowing the user to prevent the
algorithm from increasing λ towards possible sub-optimal parameters.

5.2 Generic Choice for λmax

Since the first time the self-adjusting (1 + (λ, λ)) GA was proposed, the algorithm had a limit on
the value of λ of n. This was imposed in order to prevent the mutation probability from exceeding
1. As a secondary effect it gives the algorithm a safety net, allowing it to fall back to the behaviour
of the (1 + n) EA in case λ reaches its maximum value, as we explored on Section 3.

We argue that, if the problem is not known, a good generic strategy is to set λmax = n/2. This
means that, in a situation where no improvements are found quickly and λ increases, the self-
adjusting (1 + (λ, λ)) GA is able to simulate random search during the mutation phase whenever
λmax is reached. This is a potential advantage when the algorithm is stuck in a very hard local
optimum, or on deceptive functions where random search is a viable technique (e.g. Jumpk with
large k such as k > n/ logn). Note that the self-adjusting (1 + (λ, λ)) GA still retains its exploitation
capability even with λ = n/2 because the offspring from the crossover phase would still have on
average only 1 bit different from the parent. Hence, the algorithm performs wide exploration and
exploitation at the same time, in different phases of the same generation. In addition, the algorithm
is still able to optimise OneMax efficiently; the cap on λ only kicks in when regular exploitation
fails.

To justify our choice of λmax = n/2 we present a general bound for the self-adjusting (1 + (λ, λ))
GA with this parameter choice in Theorem 5.1. This theorem shows that λmax = n/2 only has a

worst-case runtime of O (dn) + 2n+4

|OPT | that applies for most functions as opposed to the worst-case

expected runtime of nΘ(n) for the (1 + 1) EA. Note that this bound does not include Trap functions
which we consider in Section 5.3.

Theorem 5.1. Let f be any function with d non-optimal fitness values and a set OPT of global

optima such that either |OPT | ≥ 2 or OPT = {x∗} and its complement x∗ does not have the second-

best fitness value. Then for the self-adjusting (1 + (λ, λ)) GA with λmax := n/2 and F > 1 constant we

have

E(T eval) ≤ O (dn) +
2n+4

|OPT| ;

E(T gen) ≤ O (d + logn) +
2n+3

n |OPT| .

Proof. By Lemma 3.3, the algorithm spends O (dn) evaluations and O (d + logn) generations in
settings with λ < λmax. Hence, we can focus on improvement probabilities when λ = λmax.

If |OPT | ≥ 2, by Lemma 4.2, the probability of one generation hitting any search point in OPT
that is not the binary complement of the current search point is at least λmax · 2−n−1 = n · 2−n−2.
Since there are at least |OPT | − 1 ≥ |OPT |/2 such search points, the probability for finding the
optimum is at least n · 2−n−3 · |OPT |. Taking the reciprocal gives an upper bound on E(T gen), and
multiplying by 2λmax = n yields a bound on E(T eval).

If OPT = {x∗}, we use the same argument to show that within 2n+3

n |OPT | generations we either hit

an optimum or a second-best search point. From the latter, the probability of hitting the optimum

is bounded in the same way, since by assumption the current search point is different from x∗.
Then we proceed as before. �
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5.3 Trap Functions

The conditions from Theorem 5.1 require a fitness function to either contain at least two global
optima, or that the complement of the unique global optimum does not have the second-best fit-
ness. Most fitness functions meet this condition. Notable exceptions are Trap functions (defined in
Section 2.3) as there the local optimum 1n with the second-best fitness is precisely the complement
of the unique global optimum 0n . We show that Trap functions were excluded from Theorem 5.1
for a good reason since for Trap functions the runtime is higher than the bound from Theorem 5.1
by a factor of order Ω(n).

Theorem 5.2. Let F > 1 be a constant and λmax = n/2. The expected optimisation time (in terms

of fitness evaluations) of the self-adjusting (1 + (λ, λ)) GA on the Trap function is Ω(n2n ).

Proof. We divide the proof in three parts, the initialisation phase, the OneMax phase, and the
trap phase.

The expected number of zero bits in the initial individual is n/2. By applying Chernoff bounds
we can see that, w.o.p. the initial individual has at least n/3 one bits. Therefore, with at least the
same probability the algorithm does not find the optimum during the initialisation phase.

From Theorem 9 in Doerr and Doerr [2018], we know that the OneMax phase takes in expecta-
tion E(TOneMax) = O (n) generations.3 We now prove that during these generations the algorithm
does not find the optimum w.o.p.

By Lemma 4.2 the probability to find the optimum during the mutation phase at a Hamming
distance of at least n/3 is:

Pr (x ′ = x∗) ≤ �λ�
(
λ

n

)n/3 (
1 − λ

n

)2n/3

≤ n · 3−
n
3

(
3

2

)− 2n
3

. (3)

The second inequality comes from bounding �λ� ≤ n and using the parameter λ = n/3 every-

where else, which maximises the term ( λ
n

)n/3 (1− λ
n

)2n/3. For the crossover phase, to find the global
optimum we use Lemma 4.3, obtaining,

Pr (y = x∗) ≤ 	λ�2
(

1

n

)n/3 (
1 − 1

n

)2n/3

≤ n−
n
3 +2 · e−2/3. (4)

Adding Equations (3) and (4) we get a probability of finding the optimum in one iteration of
p = O (n · 3−n · 22n/3). Then the probability to find the optimum during TOneMax iterations is at
most

∞∑
t=0

Pr
(
TOneMax = t

)
· tp = p · E

(
TOneMax

)
= O (n2 · 3−n · 22n/3).

Finally, during the trap phase since x = x∗ from Lemma 4.2 we get

Pr (y = x∗) =

(
λ

n

)n

≤ 2−n .

By Lemma 3.2, the algorithm spends at most �4 logF (n/2)� generations to get to the parameter

λ = n/2. The probability of finding the optimum during these iterations is 1− (1−2−n ) �4 logF (n/2)� ≤
22−n logF n. Once the maximum parameter value has been reached, the probability of sampling
� = n and thus find the optimum is Pr(y = x∗) = 2−n . Hence, in expectation 2n further iterations
are needed to find the optimum and each one of these iterations uses n evaluations. Since this
situation is reached w.o.p., the expected number of evaluations is Ω(n · 2n ). �

3As long as λmax is bigger than C0

√
n/(n − OneMax(x )) for a constant C0 large enough to satisfy Lemma 16 in Doerr and

Doerr [2018] the bound of O (n) from Theorem 9 in Doerr and Doerr [2018] holds.
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5.4 Jumpk Functions

In this section we explore in detail how capping λ affects the performance of the algorithm on
Jumpk functions. In the following theorem, we only consider the mutation phase and assume for
simplicity to start in the local optimum.

Theorem 5.3. After reaching the local optimum, the expected number of function evaluations for

the self-adjusting (1 + (λ, λ)) GA with F > 1 constant and λ capped at λmax < n is at most

O (λmax) + 4

(
n

λmax

)k (
1 − λmax

n

)−n+k

.

Proof. By Lemma 3.2, λ reaches λmax or the algorithm finds the global optimum withinO (λmax)
evaluations. Then the probability of jumping to the optimum in one generation is at least λmax/2 ·
(λmax/n)k (1−λmax/n)n−k by Lemma 4.2. Taking the reciprocal and multiplying by 2λmax yields the
claim. �

Note that for λmax := k , Theorem 5.3 yields an upper bound of

O (k ) + 4
(n
k

)k
(
1 − k

n

)−n+k

.

For k ≥ 3, these bounds match the expected time for the (1 + 1) EA with the optimal mutation
rate ofk/n up to constant factors [Doerr et al. 2017]. However, we would need to knowk in advance,
which defies the goal of parameter control. As mentioned before, an alternative strategy is to set
λmax := n/2.

Theorem 5.4. Let k < n
4 . After reaching the local optimum, the expected number of function

evaluations for the self-adjusting (1 + (λ, λ)) GA with F > 1 constant and λmax := n/2 on Jumpk is

E(T eval) ≤
⎧⎪⎪⎨⎪⎪⎩
O

((
n
2

)k
)

if k ≤ log(n/2)
2 ,

O (min{(2n)k−1, 2n }) otherwise.

Note that these upper bounds prove that the self-adjusting (1 + (λ, λ)) GA with λmax := n/2 is
faster than the (1 + 1) EA with the default mutation rate 1/n for all k ≤ logn and k > n/ logn as
the latter needs expected time Θ(nk ) [Droste et al. 2002].

Before proving Theorem 5.4 we need to understand how the crossover phase might help the
optimisation process. For the crossover phase to be able to find the optimum, the selected offspring
from the mutation phase must flip all 0-bits from the parent. Afterwards the crossover phase is able
to repair such offspring to find the global optimum. This was studied by Antipov et al. [2020] for
any static parameter choice.

Theorem 5.5 (Theorem 3.3 in Antipov et al. [2020]). Let k ≤ n
4 . Assume that p ≥ 2k

n
and

q� ≥ 0.1 is the probability that the number of bits flipped � ∈ [pn, 2pn]. After reaching the local

optimum, the expected runtime of the (1 + (λ, λ)) GA with static parameters on Jumpk is

E(T eval) ≤ 8λ

q� min{1, λ
(

p

2

)k
}min{1, λck (1 − c )2pn−k }

;

E(T gen) ≤ 4

q� min{1, λ
(

p

2

)k
}min{1, λck (1 − c )2pn−k }

.

An extension of this theorem to the self-adjusting (1 + (λ, λ)) GA can be easily shown as follows.
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Lemma 5.6. Let k ≤ n
4 . After reaching the local optimum the expected runtime of the self-adjusting

(1 + (λ, λ)) GA with p = λ/n, c = 1/λ, λmax ≥ 2k and F > 1 constant on Jumpk is

E(T eval) ≤ O (n) +
8

q� min
{
1, λmax

(
λmax

2n

)k
} (

1
λmax

)k (
1 − 1

λmax

)2λmax−k
.

Proof. By Lemma 3.2, λ reaches λmax or the algorithm finds the global optimum withinO (logn)
generations and O (n) evaluations. Then the algorithm will always use λ = λmax, therefore the
probability of jumping to the optimum during the crossover phase is given by Theorem 5.5. �

We now have the necessary tools to prove Theorem 5.4.

Proof of Theorem 5.4. For the proof we use Lemma 5.6 as follows:

E(T eval) ≤ O (n) +
8

q� min{1, n
2

(
1
4

)k
}( 2

n
)k (1 − 2

n
)n−k

.

Note that k ≤ log(n/2)
2 is equivalent to n

2 ( 1
4 )k ≥ 1 and this implies min{1, n

2 ( 1
4 )k } = 1. Hence,

E
(
T eval

)
≤ O (n) +

8

q� ( 2
n

)k (1 − 2
n

)n−k
= O

((n
2

)k
)
.

If
log(n/2)

2 < k then min{1, n
2 ( 1

4 )k } = n
2 ( 1

4 )k and

E(T eval) ≤ O (n) +
8

q�
n
2

(
1
4

)k
( 2

n
)k (1 − 2

n
)n−k

≤ O (n) +
32

q� ( 1
2n

)k−1 (1 − 2
n

)n−k
= O

(
(2n)k−1

)
.

In addition, we also consider the upper bound from Theorem 5.1, obtaining E(T eval) = O (2n ). �

6 PARAMETER LANDSCAPE ON Jumpk

In Section 5 it was shown that choosing λmax = k gives an expected runtime only a constant fac-
tor worse than the (1 + 1) EA with optimal mutation probability of k/n. However, this runtime
guarantee only takes into account the mutation phase of the algorithm. Here we analyse the pa-
rameter landscape of the self-adjusting (1 + (λ, λ)) GA with p = λ/n, c = 1/λ and λmax ∈ [1,n].

To analyse the effects of the parameter λmax we use the precise expression of the probability sλmax

k
of the (1 + (λ, λ)) GA with λ = λmax to jump from the local optimum to the global optimum in
one iteration. Hereby we ignore the initial time to climb up to the local optimum and the time for
λ to increase to λmax. Our previous analyses have shown that these times are negligible anyway.
Antipov and Doerr [2020] computed the probability of jumping from a local optimum to the global
optimum, but only considered the offspring from the crossover phase for selection. The probability
of jumping from the local optimum to the global optimum is

sλmax

k
=

n∑
j=0

Pr (� = j | λ = λmax) · Pr (y = x∗ | � = j ∧ λ = λmax) .

Since � ∼ B (n,p) the probability of sampling � = j is given by

Pr (� = j | λ = λmax) =

(
n

j

) (
λmax

n

) j (
1 − λmax

n

)n−j

.

The probability of finding the optimum depends on the number of bits flipped, �. For the algorithm
to find the optimum, � needs to be at least the size of the jump k in order to be able to flip all the
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0-bits. Thus, for all � < k , Pr(y = x∗ | � = j∧λ = λmax) = 0. When � = k , if the mutation phase flips
all the 0-bits, the optimum is found and the crossover phase is not needed. This has a probability of

Pr (y = x∗ | � = k ∧ λ = λmax) = 1 − 
��1 − 1(
n
k

) 
��
λmax

.

Following Antipov and Doerr [2020], for � > k the global optimum can only be found during
the crossover phase because the mutation phase flips more than k bits. In order for the crossover
to be able to find the optimum, first the algorithm needs to select a good offspring during the
mutation phase, that is, an offspring from the set of all possible offspring that flip all the k 0-bits

from the parent that we call X (∗) . Hence, we can calculate the probability of finding the optimum
during the crossover phase by taking the probability of selecting an offspring during the mutation

phase in X (∗) and multiplying it by the conditional probability of finding the optimum given that

x ′ ∈ X (∗) . That is, Pr(y = x∗ | � = j ∧ λ = λmax) equals

Pr
(
x ′ ∈ X (∗) | � = j ∧ λ = λmax

)
· Pr

(
y = x∗ | x ′ ∈ X (∗) ∧ � = j ∧ λ = λmax

)
.

The probability of the mutation operator flipping all the 0-bits from the parent is
(
n−k
�−k

)
/
(

n
�

)
. If

� ∈ [k + 1, 2k − 1] any offspring from the mutation phase that flips all 0-bits has more than n − k
ones and hence falls into the valley of search points with a fitness less than k . This is worse than
any offspring that does not flip all 0-bits. Therefore, in order to select an offspring with all 0-bits
flipped the algorithm needs to create all offspring with all k 0-bits flipped, that is,

Pr
(
x ′ ∈ X (∗) | � = j ∧ λ = λmax

)
=

��
(

n−k
j−k

)
(
n
j

) 
��
λmax

.

In contrast, for � ≥ 2k the algorithm always selects an offspring with all k 0-bits flipped if one
is created. This is because the algorithm flips at least k 1-bits in all mutants, hence the number
of 1-bits in each mutant is at most n − k , making an offspring with the k 0-bits flipped have the
greatest fitness value. Therefore, the probability of this event is

Pr
(
x ′ ∈ X (∗) | � = j ∧ λ = λmax

)
= 1 − 
��1 −

(
n−k
j−k

)
(

n
j

) 
��
λmax

.

After selecting an offspring x ′ ∈ X (∗) during the mutation phase, to generate the global optimum
in the crossover phase the algorithm needs to take the k bits which are zero in x from x ′ and
take all the � − k bits which are zero in x ′ from x . This has a probability of ck (1 − c )�−k for one
offspring, and it needs to happen for at least one of the λ offspring. This yields

Pr
(
y = x∗ | x ′ ∈ X (∗) ∧ � = j ∧ λ = λmax

)
= 1 − 
�1 −

(
1

λmax

)k (
1 − 1

λmax

) j−k
�
λmax

.

Putting all together and using λ′ := λmax to improve readability we have shown the following.

Theorem 6.1. Consider the self-adjusting (1 + (λ, λ)) GA capping λ at λ′ = λmax on Jumpk . When

the algorithm has reached the local optimum and λ = λ′, the probability of creating the optimum in

one generation is
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sλ′

k =

(
n

k

) (
λ′

n

)k (
1 − λ′

n

)n−k 
���1 − 
��1 − 1(
n
k

) 
��
λ′
���

+

2k−1∑
j=k+1

(
n

j

) (
λ′

n

) j (
1 − λ′

n

)n−j 
��
(
n−k
j−k

)
(
n
j

) 
��
λ′

· 
�1 −
(
1 −

(
1

λ′

)k (
1 − 1

λ′

) j−k
)λ′
�

+

n∑
j=2k

(
n

j

) (
λ′

n

) j (
1 − λ′

n

)n−j 
���1 − 
��1 −

(
n−k
j−k

)
(

n
j

) 
��
λ′
��� ·


�1 −
(
1 −

(
1

λ′

)k (
1 − 1

λ′

) j−k
)λ′
�

and the expected number of fitness evaluations to find the global optimum is 2λmax/s
λmax

k
.

Note that the first line is precisely the probability pλ′
mut (x ,x

∗) that the optimum is found during
the mutation phase. We have already bounded this in Lemma 4.2 from above and below. By the
final statement in Lemma 4.2, for k ≥ 2 the probability equals λ′(λ′/n)k (1−λ′/n)n−k bar a negative
small-order term. The term (λ′/n)k (1 − λ′/n)n−k (without the leading factor λ′) is maximised for
λ′ := k . Hence, the first line attains its maximum around λ′ = k .

In the first summation, the term (
(n−k

j−k )
(n

j )
)λ′ simplifies to ( j (j−1) ·... ·(j−k+1)

n (n−1) ·... ·(n−k+1) )λ′ , which is bounded

from above by (2k/(n−k ))kλ′ . For k = o(n), these summands are all negligibly small, compared to
the other terms from Theorem 6.1.

The last summation was bounded from below by Antipov et al. [2020] for all λ ≥ 2k as:

1

40
min

⎧⎪⎨⎪⎩1, λ

(
λ

2n

)k⎫⎪⎬⎪⎭ λ
(

1

λ

)k (
1 − 1

λ

)2λ−k

.

Since (1 − 1
λ

)2λ−k = Θ(1) for λ ≥ 2k and it converges to e−2 as λ grows, we ignore this factor, and
the constant 1/40, for the time being, and focus on the term

min
⎧⎪⎨⎪⎩1, λ

(
λ

2n

)k⎫⎪⎬⎪⎭ λ
(

1

λ

)k

= min

{
λ

(
1

λ

)k

, λ2
(

1

2n

)k
}

instead. For λ( λ
2n

)k ≤ 1 the minimum simplifies to λ2 ( 1
2n

)k , which is non-decreasing in λ. For

larger λ, the minimum simplifies to λ( 1
λ

)k , which is non-increasing in λ. Hence, the above expres-

sion is maximised for λ( λ
2n

)k = 1 or, equivalently, λ = (2n)k/(k+1) .

This suggests that the probability of finding the global optimum from the local optimum, sλmax

k
,

as stated in Theorem 6.1 is maximal around λmax = k and around λmax = (2n)k/(k+1) . Since the ex-

pected time to find the optimum, 2λmax/s
λmax

k
, is proportional to the reciprocal of the improvement

probability (with an additional factor of 2λmax), this would imply that the expected optimisation
time is locally minimal around these values. Note that, while Theorem 6.1 is rigorous, the above
discussion about the possible location of minima is only semi-rigorous and partly based on up-
per and lower bounds of probabilities. Therefore, to analyse the parameter landscape we compute

2λmax/s
λmax

k
exactly forn ∈ {125, 250, 500}, k ∈ {3, 4, 5, 6} and λ ∈ {1, . . . ,n} using the exact formula

from Theorem 6.1. Figure 1 shows these computations.
As seen in Figure 1, the parameter landscape is a bimodal function for k ≥ 4 with one minimum

at or around λmax = k , as predicted by the discussion above. There is another local optimum for
much larger values of λmax. Our above semi-rigorous arguments predicted a minimum around

λmax = (2n)k/(k+1) . The real minimum is attained for slightly smaller values of λmax. Recall that
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our prediction was based on a bound of the improvement probability, and we suspect that the
bound is not precise enough to predict the exact location of the minimum.

The two local optima are surrounded by a basin of attraction, one narrow and one wide, that
changes according to the relation between n and k . For small values of k, the wider basin of attrac-
tion contains the optimal parameter value and if k is small enough (k ≤ 3) both basin of attractions
merge, transforming the parameter landscape into a unimodal function. For largerk values the nar-
rower basin of attraction contains the optimal parameter and it gets narrower for bigger problem
sizes. We note that in this case the optimal parameter maximises the probability of finding the op-
timum during the mutation phase, hence we obtain much better performance when considering
the offspring from both phases versus only the crossover phase.

This complex parameter landscape further shows that it can be hard to predict the correct pa-
rameter values to use for a given problem, especially if the problem is not well understood.

Additionally, since the parameter landscape is bimodal, if gradient descent was used for parame-
ter tuning, it would easily get stuck far away from the optimal parameter value. This is particularly
true for values ofk = o(n) large enough for λ = k to be the best parameter (as seen in Figure 1 when
k = 6) because we believe the basin of attraction around λ = k has a size of Θ(k ), while the other
basin of attraction seems to have a size of Θ(n). Hence, it seems plausible that gradient descent
would start in the wrong basin of attraction and only be able to find a locally optimal parameter.

Finally, to complement our runtime predictions, we executed experiments varying λmax with
n = 60 andk = 4 and compared them against the computed E(T eval). The results of the experiments
are shown in Figure 2. We note that although the average function evaluations follow closely our
predictions, the standard deviation was in the same order of magnitude as the mean, meaning that
there was a large variation from run to run. This large variation also results in the median being
smaller than the mean, but both follow the same patterns with respect to λmax.

7 RESETTING λ

Any generic choice of a maximum λmax bears the risk that the self-adjusting (1 + (λ, λ)) GA might
get stuck with sub-optimal parameters. A solution to avoid this is to reset λ to 1 if λ = λmax and
there is another unsuccessful generation. This makes the algorithm cycle through the parameter
space in unsuccessful generations. A similar modification was made in Goldman and Punch [2015],
where the authors restart the parameter to λ = 1, but also restart the search from a random indi-
vidual. We do not restart the search because for functions like Jumpk , restarts would run into the
same set of local optima w.o.p. In Bassin et al. [2021], the authors reset λ, but instead of resetting
to 1, they reset to the last successful parameter. We argue that, if the next step of the optimisation
needs a lower value of λ than the used in the last successful generation, since λ only increases in
unsuccessful generations the algorithm will never use the correct parameter.

7.1 Self-Adjusting (1 + (λ, λ) GA Resetting λ

We analyse the simple strategy of resetting λ to 1 after an unsuccessful generation at λmax = n.
This strategy takes advantage of two different behaviours. When hill-climbing, the algorithm uses
self-adjustment to regulate λ and maintain its value in a good parameter range. Because of this,
its optimisation time is not affected for problems like OneMax. However, when the algorithm
encounters a local optimum, its behaviour is similar to the dynamic (1 + 1) EA [Jansen and Wegener
2006] that cycles through different parameter regions, like λ ∼ n/2, λ = n. This helps the algorithm
to simulate random search and the (1 + n) EA in one cycle. Furthermore, it is not affected by the
modality of the parameter landscape. In addition, during every generation the crossover phase is
still focusing on exploitation, generating offspring concentrated around the parent.
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Fig. 1. E(T eval) of the self-adjusting (1 + (λ, λ)) GA on Jumpk with n ∈ {125, 250, 500} and k ∈ {3, 4, 5, 6}
varying λmax.

Fig. 2. E(T eval), mean and median number of evaluations and 10%, 25%, 75%, 90% quantiles of the self-

adjusting (1 + (λ, λ)) GA on Jumpk with n = 60 and k = 4 varying λmax over 1,000 runs.

This strategy is similar to the stagnation detection described in Rajabi and Witt [2020b, 2021b]
in the sense that when λ = n, the algorithm is likely to be in a local optimum and the behaviour
of the algorithm changes to explore different parameters. Once λ = n, different approaches could
be used, such as sampling λ from a power-law distribution as in Antipov et al. [2020]. If a large
jump is expected we could even use the non-standard parameters from Antipov and Doerr [2020]
and come back to the self-adjusting behaviour once an improvement is found. Although these can
be viable solutions we acknowledge that the parameter λ could increase to n without being in a
local optimum, for example while optimising a function with low fitness-distance correlation or
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ALGORITHM 3: The self-adjusting (1 + (λ, λ)) GA resetting λ.

1 Initialization: Sample x ∈ {0, 1}n uniformly at random;

2 Initialize λ ← 1, p ← λ/n, c ← 1/λ;

3 Optimization: for t = 1, 2, . . . do

4 Sample � from B (n,p);
Mutation phase:

5 for i = 1, . . . , 	λ� do

6 Sample x (i ) ← flip� (x ) and query f (x (i ) );

7 Choose x ′ ∈ {x (1) , . . . ,x (λ) } with f (x ′) = max{ f (x (1) ), . . . , f (x (λ) )} u.a.r.;

Crossover phase:

8 for i = 1, . . . , 	λ� do

9 Sample y (i ) ← crossc (x ,x ′) and query f (y (i ) );

10 If {x ′,y (1) , . . . ,y (λ) }\{x } � ∅, choose y ∈ {x ′,y (1) , . . . ,y (λ) }\{x } with

f (y) = max{ f (x ′), f (y (1) ), . . . , f (y (λ) )} u.a.r.;

11 otherwise, set y := x ;

Selection and update step:

12 if f (y) ≥ f (x ) then x ← y;

13 if f (y) > f (x ) then λ ← max{λ/F , 1};
14 if f (y) ≤ f (x ) ∧ λ = n then λ ← 1;

15 if f (y) ≤ f (x ) ∧ λ � n then λ ← min{λF 1/4,n};

by choosing F as a large constant as explored in Doerr and Doerr [2018] where the authors warn
that λ can diverge even on simple problems if F ≥ 2.25. Because of this we decide to study the
algorithm without changing its behaviour drastically.

7.2 General Method

We show that the fitness-level method can be applied here as well. In contrast to Theorem 3.1,
here improvement probabilities refer to the transitions of the (1 + (λ, λ)) GA, and we consider
improvement probabilities across a whole cycle of parameter values.

Theorem 7.1. Given a canonical f -based partition A1, . . . ,Am+1, and s
cycle
i a lower bound on the

probability of finding an improvement on level i during a cycle. Then for the self-adjusting (1 + (λ, λ))

GA resetting λ to 1, using F > 1 which may depend on n, we have

E(T eval) ≤ O

(
F 1/4n

F 1/4 − 1

) m∑
i=1

1

s
cycle
i

;

E(T gen) ≤ O (�logF (n)�)
m∑

i=1

1

s
cycle
i

.

Proof. Since the f -based partition is canonical, the current fitness level is left as soon as we
encounter a successful generation. Until this happens, the self-adjusting (1 + (λ, λ)) GA cycles
through all parameters for λ. We use Lemma 3.2 to show that for every time the algorithm cycles

through all the parameters once, it uses O (�logF (n)�) generations and O ( F 1/4n
F 1/4−1

) evaluations. The

probability of leaving the current fitness level during a cycle is at least s
cycle
i by assumption. Hence,

the expected number of cycles is at most 1/s
cycle
i . Together, this proves the claimed bounds. �
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7.3 Upper Bounds on Jumpk

To showcase how this bound can be used we show an upper bound for Jumpk . Note that, when

applying Theorem 7.1, we may bound s
cycle
i from below by only considering the best parameter

settings the algorithm can use for the current fitness level, making it easy to use. In our case we
focus on values of λ close to k since in Section 6 we showed that for large k it gives the best
performance. In addition, we also consider λ = n because for small k and steps outside the local
optimum this gives a better runtime, decreasing the complexity of the proof.

Theorem 7.2. Let F = F (n) > 1 and k ≥ 2. The expected number of evaluations of the self-

adjusting (1 + (λ, λ)) GA resetting λ to 1 on Jumpk is

min

{
O

(
F 1/4nk

F 1/4 − 1

)
,O

((
F (k+2)/4

F 1/4 − 1

) (en
k

)k+1
)}
.

Proof. For the fitness levels A1 . . .Am−1 any individual can leave the current fitness level by

increasing or decreasing the number of 1-bits. For these fitness levels we bound s
cycle
i by only con-

sidering generations with λ = n, therefore similar to Theorem 3.1 s
cycle
i ≥ si n

1+si n
, where si is a lower

bound for the probability that the (1 + 1) EA with p = 1/n creates an offspring in Ai+1 . . .Am+1

from a search point in Ai . Using the crude estimate si ≥ 1/(en) gives us an expected number of

generations of 1/s
cycle
i ≤ e + 1 to leave any of these fitness levels.

For the local optimum in fitness levelAm , we use s
cycle
m ≥ max{sk∗

m , s
n
m } with sk∗

m and sn
m being the

probability of leaving Am in one generation with λ ∈ [ k
F 1/4 ,k] and λ = n, respectively, and bound

them separately. To compute sn
m , as before, we use the probability that the (1 + 1) EA with p = 1/n

finds an improvement, that is, sm = (1/n)k (1 − 1/n)n−k ≥ 1/(enk ) to obtain

sn
m ≥

smn

1 + smn
≥ 1/(enk−1)

1 + 1/(enk−1)
≥ 1

enk−1 + 1
.

For sk∗
m we use Lemma 4.2 and the range λ ∈ [ k

F 1/4 ,k] as follows,

sk∗
m ≥

	λ

2

(λ/n)k (1 − λ/n)n−k

≥ λ

4
(λ/n)k (1 − λ/n)n−k ≥ k

4F 1/4

(
k

F 1/4n

)k (
1 − k

n

)n−k

≥ k

4F 1/4

(
k

F 1/4en

)k

,

where the last inequality holds by Lemma 2.2. Applying Theorem 7.1 with s
cycle
m ≥ max{sk∗

m , s
n
m }

and absorbing the expected times for fitness levels i < m in the asymptotic notation proves the
claimed bounds. �

Similar to Bassin et al. [2021], we can slow down the growth of λ. We accomplish this by cleverly
choosing F in such a way that the algorithm is able to use every λ ≤ n, ensuring that the algorithm

uses the best parameter value. Choosing F = (1 + 1/n)4 in Theorem 7.2 implies that F (k+2)/4 =

(1 + 1/n)k+2 ≤ (1 + 1/n)n+2 = O (1), hence this factor can be dropped. Also note that 1
F 1/4−1

=
1

(1+1/n)−1 = n. Together, we obtain the following.

Corollary 7.3. Let F = (1 + 1/n)4 and k ≥ 2. The expected optimisation time (in terms of fitness

evaluations) of the modified self-adjusting (1 + (λ, λ)) GA on the Jumpk function is

min

{
O

(
nk+1

)
,O

(
n

(en
k

)k+1
)}
.
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Table 1. Example of Runtime Bounds We Obtain for the Self-adjusting (1 + (λ, λ)) GA

with Different Self-adjusting Mechanisms

Mechanism
Bounds

General bound Jumpk

Expected number of evaluations

Vanilla O (dn) + 2
∑m

i=1
1
si

(1 ± o(1)) · 2nk
(
1 − 1

n

)−n+k

Capping λ
at λmax = k

– O (k ) + 4
(

n
k

)k (
1 − k

n

)−n+k

Capping λ
at λmax = n/2

O (dn) + 2n+4

|OPT |

⎧⎪⎪⎨⎪⎪⎩
O

((
n
2

)k
)

if k ≤ log(n/2)
2 ,

O
(
min{(2n)k−1, 2n }

)
otherwise.

Resetting λ O
(

F 1/4n
F 1/4−1

) ∑m
i=1

1

s
cycle
i

min
{
O

(
F 1/4nk

F 1/4−1

)
,O

((
F (k+2)/4

F 1/4−1

) (
en
k

)k+1
)}

Resetting λ
with F = (1 + 1/n)4 – min

{
O

(
nk+1

)
,O

(
n

(
en
k

)k+1
)}

Expected number of generations

Vanilla
⌈
4 logF (n)

⌉
+ 6d + 1

n

∑m
i=1

1
si

(1 + o(1)) · 2nk−1
(
1 − 1

n

)−n+k

Capping λ
at λmax = n/2

O (d + logn) + 2n+3

n |OPT | –

Resetting λ O (�logF (n)�) ∑m
i=1

1

s
cycle
i

–

Note that some of the results are subject to further conditions, e.g., 4 ≤ k ≤ (1 − ε )n/2.

Comparing the bound of Corollary 7.3 against the expected optimisation time of the (1 + 1) EA
with optimal mutation rate of k/n, which isTopt = Θ(( en

k
)k ) [Doerr et al. 2017], our bound is larger

thanTopt by a factor ofO (n2/k ) without the need to know the jump size k in advance. Our bound is

only by a factor of O (n2/k2) larger than the bound for the (1 + 1) EA with the heavy-tailed (“fast”)
mutation operators from Doerr et al. [2017] with the recommended parameter β = 1.5.

8 EXPERIMENTAL RESULTS

In the previous sections we performed asymptotic analyses focusing mainly on Jumpk functions
(summarised in Table 1). In this section, we conduct an experimental analysis that aims to accom-
plish the following goals: (1) to complement our theoretical results with precise runtime results for
concrete problem instances and jump sizes, (2) to compare the runtime of all the proposed versions
of the self-adjusting (1 + (λ, λ)) GA against related algorithms, and (3) to test how the mathematical
results obtained translate to other fitness landscapes.

In the experiments of this section, we ran an implementation4 of all the different modifications of
the self-adjusting (1 + (λ, λ)) GA studied in previous sections on different problems and compared
them against:

• The (1 + 1) EA with the standard mutation rate p = 1/n.
• The (1 + 1) EA with the optimal choice of p = k/n (on Jumpk ).

4The complete implementation and results can be found on GitHub (https://github.com/mariohevia/Parameter-Control-

Mechanisms-Genetic-Algorithm)
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• The “fast” (1 + 1) fEA [Doerr et al. 2017] with a heavy-tailed mutation rate: p = r/n and
r ∼ pow(1.5,n).
• The (1 + (λ, λ)) GA with a heavy-tailed choice of λ ∼ pow(2.5,n/2) [Antipov et al. 2020] that

we call the heavy-tailed (1 + (λ, λ)) GA.
• The (1 + (λ, λ)) GA with non-standard parameters and a heavy-tailed choice of
λ ∼ pow(2,min{5n/10, 106}), p = c =

√
s/n and s ∼ pow(1,n) [Antipov and Doerr 2020].

We note that for all versions of the (1 + (λ, λ)) GA including the ones with heavy-tailed param-
eters we consider the offspring from both mutation and crossover phases in the selection phase.

The parameter selection for the heavy-tailed algorithms was made following the recommenda-
tions of each study. In particular, for the (1 + (λ, λ)) GA with non-standard parameters, the upper
bound for λ in the distribution is suggested to be exponential in n but because of memory demand
from storing the probabilities in the power-law distribution, during implementation we impose a
limit of 106 independent of n.

All experiments comprise of 500 runs for each algorithm-problem pair, recording the number
of fitness evaluations to reach the optimum and the average is reported unless otherwise stated.

In the following we report on results of statistical tests executed as follows. We performed Mann-
Whitney U Test for all pairs of algorithms compared in the text. We performed two-sided tests to
check whether the two input distributions differ or not, followed by one-sided tests both ways
to confirm which algorithm is stochastically faster than the other. We report a comparison as
statistically significant if the p-values of the two-sided test and that of the respective one-sided
test both satisfied p ≤ 0.01, that is, a confidence level of 0.01. When comparing one algorithm
against several others, we performed a pairwise comparison for each pair as explained before and
applied the Bonferroni correction.

8.1 Empirical Analyses on Jumpk Functions

For the class of Jumpk functions we performed two experiments focused on the effects of the
problem size and the jump size separately.

In the first experiment, we used a jump size k = 4 and n varying from 20 to 160 shown in
Figure 3. The (1 + (λ, λ)) GA with non-standard parameters has the best performance for n ≥ 40;
all comparisons are statistically significant. This is expected because the selection of parameters λ,
c and p are tailored towards Jumpk functions. The heavy-tailed (1+ (λ, λ)) GA is able to use better
λ values than the vanilla self-adjusting (1 + (λ, λ)) GA, performing statistically significantly better
for all n although it performs statistically significantly worse than both resetting strategies and
capping λ to n/2 for n ≥ 80. It is worth pointing out that the self-adjusting (1 + (λ, λ)) GA capping
λ to n/2 and both versions resetting λ scale better with n than the (1 + 1) fEA. The self-adjusting
(1 + (λ, λ)) GA variants are statistically slower than the (1 + 1) fEA for n = 20 but for n ≥ 80 they
are statistically faster. This is most likely because the parameter landscape for instances with large
n resemble the ones shown in the second column of Figure 1 in Section 6, where using values of
λ that are linear in n help the crossover phase find the optimum even faster than the mutation
phase with λ = k and by extension faster than any mutation rate for the (1 + 1) EA. Despite this
possible advantage, these algorithms perform statistically significantly worse than the (1 + 1) EA
with p = k/n on these Jumpk instances because they waste some evaluations with non-optimal
parameters. To inquire further, we performed additional experiments on Jumpk with n = 160 and
k = 2 that are not shown in the figures where the self-adjusting (1 + (λ, λ)) GA resetting λ with
F = (1+1/n)4 is statistically significantly faster than the (1 + 1) EA with optimal parameter values,
showing that for some instances of Jumpk the (1 + (λ, λ)) GA with standard parameter settings can
be faster than the (1 + 1) EA with the optimal mutation rate.
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Fig. 3. Box plot of the number of fitness evaluations on Jumpk with n = {20, 40, 60, . . . , 160} and k = 4 over

500 runs.

For the second experiment, we aimed to explore the effects of the jump size k . We used a small
problem size of n = 20, varying the jump size from 2 to 7 shown in Figure 4. In this case we see
that for larger values of k the self-adjusting (1 + (λ, λ)) GA capping λ to n/2 and resetting λ do
not excel but they are still competitive with the (1 + 1) fEA. This in conjunction with the good
performance of the self-adjusting (1 + (λ, λ)) GA capping λ to k indicates that the mutation phase
is much better at finding the optimum for large k . This is in agreement with our analysis of the
parameter landscape from Section 6. Lastly in this experiment the non-standard (1 + (λ, λ)) GA
does not excel. We suspect that this is caused by the small problem size n = 20.

In both plots shown in Figures 3 and 4, the average number of fitness evaluations for the self-
adjusting (1 + (λ, λ)) GA with standard parameters and with λmax = k is around twice the average
for the (1 + 1) EA with p = 1/n and p = k/n, respectively, as predicted by our theoretical results.

8.2 Empirical Analyses on OneMax

In this section we study the algorithms on OneMax. We consider this problem because the self-
adjusting (1 + (λ, λ)) GA is the fastest known unbiased genetic algorithm on OneMax (with an
expected number ofO (n) fitness evaluations, whereas the (1 + 1) EA needs Θ(n logn) expected fit-
ness evaluations) and we want to illustrate the effects of the different parameter control strategies
on the performance on OneMax.

Figure 5 shows the average number of fitness evaluations, normalised by the problem size n
with the x-axis (problem size) being log-scaled. Figure 5 gives us the following three insights.
First, the (1 + (λ, λ)) GA with non-standard parameters stands out as the algorithm with the worst
performance by far; all comparisons are statistically significant. This can be attributed to the choice
of parameters, mainly the larger offspring population size. Secondly, all the other variants of the
(1 + (λ, λ)) GA have a good performance and the fact that the normalised time seems to increase
slower than the (1 + 1) EA suggests that they have an asymptotic runtime faster than n logn. Lastly,
resetting and capping λ to n/2 does not affect the performance of the algorithm on OneMax,
compared to the vanilla version.

ACM Transactions on Evolutionary Learning and Optimization, Vol. 2, No. 4, Article 13. Pub. date: December 2022.



Theoretical and Empirical Analysis of Parameter Control Mechanisms 13:31

Fig. 4. Box plot of the number of fitness evaluations on Jumpk with n = 20 and k = {2, 3, 4, 5, 6, 7} over 500

runs.

8.3 Empirical Analyses on Other Benchmark Functions

To see whether the theoretical results extend to other fitness landscapes we study the algorithms
with generic parameter choices on five different functions. During these experiments we put a
limit of 2.1 billion evaluations which is close to the upper limit of the variable int in C++ (231 − 1).
The mean is computed by assigning the limit of 2.1 billion evaluations to all incomplete runs.

We consider the multimodal functions NearestPeak (NP) and WeightedNearestPeak (WNP) pro-
posed by Jansen and Zarges [2016]. These functions are characterised by a set of peaks that define
a fitness landscape. The characteristics of their landscape depends on the number, position, slope
and height of these peaks. Let pi be the bit string representing peak i , then the weightWi of peak
i isWi = (n − H(x ,pi ))ai + bi where x is the current solution, ai is the slope and bi is the height
of the peak. The difference between NP and WNP is that for NP the fitness is the weight of the
nearest peak (in Hamming distance), while for WNP the fitness is the biggest weight with respect
to the current search point. Both problems have a basin of attraction around the peaks, creating
local and global optima.

The other three functions are well known NP-hard problems: Partition, Ising Spin Glass (ISG),
and MAX-3SAT. The Partition optimisation problem is to divide a set of positive weights into
two disjoint subsets such that the largest subset sum is minimised. The ISG problem is a problem
derived from physics. The Ising model consists of discrete variables that represent magnetic dipole
moments of atomic “spins” that can be in one of two states (+1 or −1). The spins are arranged in a
graph describing the interactions strengths (edges) between spins (vertices). Neighbouring spins
with the same state have a lower interaction than those with a different state. The ISG problem
is to set the signs of all spins to minimise interactions. The MAX-3SAT problem is related to the
more common 3-SAT problem. A MAX-3SAT instance is a Boolean formula in conjunctive normal
form, that is, a logical conjunction of one or more clauses, where a clause is a logical disjunction
of three binary variables, some of which can be negated. The search space S = {0, 1}n encodes the
choice of truth values of the binary variables in the Boolean formula and the optimisation problem
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Fig. 5. Average number of fitness evaluations and standard deviation on OneMax with varying n over 500

runs of all tested algorithms (left) and a more detailed view of the best performing algorithms (right).

is to find a solution that satisfies the maximum number of clauses. Since the clauses are disjunctive,
they are satisfied if at least one of its literals is satisfied.

For all problems we used the same set of instances (one run per instance) across all algorithms
because some instances might be more difficult than others. The instances were generated at ran-
dom. The NP and WNP instances were generated with a problem size of 50 and different number
of peaks with one global optimum at 1n . The peaks were defined by [��pi

��1 ,ai ,bi ] where the values
correspond to the number of ones, slope and height of peak i . Every peak was generated sampling
uniformly at random a search point with the number of ones specified in pi . The following peaks
(including the global optimum) were used:

• NearestPeak:
(a) [50, 5, 0], [42, 2, 0], [41, 4, 0], [42, 2, 10]
(b) [50, 5, 0], [40, 3, 0], [42, 2, 0], [44, 1, 0], [42, 2, 10]
(c) [50, 10, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0]
• WeightedNearestPeak:
(a) [50, 10, 0], [40, 9, 0], [41, 9, 0]
(b) [50, 10, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0]

For Partition the problem size is 500, with weights selected uniformly at random in the range
[0, 1]. Given that Partition is NP-hard we use a deterministic approximation algorithm called
Longest Processing Time [Neumann and Witt 2010] to set a fitness goal. If an algorithm finds
a solution with the same or higher fitness we consider the problem solved. In the case of ISG and
MAX-3SAT we use the same 100 instances per problem size used by Goldman and Punch [2015]
that were also generated at random in their work. Following Goldman and Punch [2015], we exe-
cuted one run per instance, resulting in 100 runs per problem size.
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Fig. 6. Box plot of the number of fitness evaluations on NearestPeak (NP), WeightedNearestPeak (WNP)

with n = 50 and Partition with n = 500 over 500 runs.

In Figure 6 we see the results on NP, WNP and Partition instances. For these problems all al-
gorithms found the optimum on all instances within the time budget, but given that there are a
high number of outliers we present the data in box plot form. In Figure 6 the number of peaks
is mentioned after the problem, where 5p means five peaks i.e. four local optima and one global
optimum. For these problems we see a common trend: the original self-adjusting (1 + (λ, λ)) GA
has the largest outliers in five of the six sets of experiments. This might be caused by the algo-
rithm increasing λ to its maximum when the algorithm gets stuck. The modifications studied in
this paper and the heavy-tailed (1 + (λ, λ)) GA seem to reduce the runtime of the outliers while
maintaining a similar median, with the capping strategy having a smaller impact in the runtime of
the outliers than the other algorithms. We would like to note that for all the (1 + (λ, λ)) GA versions
excluding the (1 + (λ, λ)) GA with non-standard parameters the median number of evaluations is
similar because the algorithms behave similarly when they do not get stuck in a local optimum
as seen in the experiments on OneMax and this happens in most of the runs. In addition, we can
see that the (1 + (λ, λ)) GA with non-standard parameters tends to have a slightly larger median
runtime in most cases (statistically significantly larger for all comparisons on all problems except
for NP 6p). This is most likely because when an easy instance is found the algorithm spends more
time, similar to OneMax. On the other hand, the outliers for the (1 + (λ, λ)) GA with non-standard
parameters tend to have a smaller runtime compared with the outliers for other algorithms. We
attribute this to the ability of the algorithm to perform large jumps when stuck in a local optimum
on these hard instances.

The next set of experiments were made on the Ising Spin Glass problem. Figure 7 shows a box
plot of the number of fitness evaluations, the mean and number of failures. We include the box plot
because the mean can be disturbed by failed runs capped at the limit, but the boxplot shows the
median that is unaffected by this as long as half of the runs are able to find the optimum. The mean
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Fig. 7. Box plot of the number of fitness evaluations (top), average number of fitness evaluations (middle),

and percentage of failed runs (bottom) on the Ising Spin Glass problem varying the problem size over 200

runs.

is still useful because it shows the effectiveness of an algorithm to escape local optima. A prime
example is the (1 + (λ, λ)) GA with non-standard parameters, which has the smallest mean for most
problem sizes, but its median is almost an order of magnitude larger than the smallest median.

Similar to other problems, on ISG the original self-adjusting (1 + (λ, λ)) GA tends to have larger
outliers than all other algorithms, which is reflected in the larger mean and higher number of
failures. This is attenuated by the variations studied here and the heavy-tailed (1+ (λ, λ)) GA. An
interesting point is that the (1 + 1) EA is statistically significantly faster than all the (1 + (λ, λ)) GA
variations with and without standard parameters (excluding the heavy-tailed (1 + (λ, λ)) GA and
the resetting mechanism with F = (1+ 1/n)4) in at least three of the problem sizes (n = 49, 64, 81),
which might indicate that there is a bad fitness-distance correlation for these instances. The results
of the heavy-tailed (1+(λ, λ)) GA and the resetting mechanism with F = (1+1/n)4 can be explained
by the λ values used by these algorithms. The heavy-tailed (1 + (λ, λ)) GA samples λ = 1 in most
generations and F = (1+ 1/n)4 maintains the value of 	λ� = 1 for longer, making both algorithms
behave exactly as the (1 + 1) EA in these generations, therefore they show a similar performance.

The results for MAX-3SAT are shown in Figure 8. In this case there are no statistically significant
differences between all the algorithms, but still there are some observations we can obtain. Similar
to the ISG problem for MAX-3SAT we show the median, mean and number of failed runs. Both the
(1 + 1) EA and the original self-adjusting (1 + (λ, λ)) GA run into local optima and it is hard for them
to escape, making the number of outliers, mean and number of failures increase. In contrast, all the
self-adjusting (1 + (λ, λ)) GA variants have a smaller mean and smaller number of failures. Once
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Fig. 8. Box plot of the number of fitness evaluations (top), average number of fitness evaluations (middle),

and percentage of failed runs (bottom) on the MAX-3SAT problem varying the problem size over 100 runs.

again the (1 + (λ, λ)) GA with non-standard parameters has the smallest mean and number of fail-
ures; we attribute this to its capacity to jump out of local optima faster than all the other algorithms.

8.4 Discussion

We have seen that the original self-adjusting (1 + (λ, λ)) GA has a poor performance compared to
all algorithms studied, on most problems. This shows that, as expected from theoretical results in
Sections 3 and 4, the self-adjusting (1 + (λ, λ)) GA easily increases λ to its maximum on difficult
parts of the optimisation, degrading the performance of the algorithm. Both resetting and capping
λ improved the performance on almost all difficult problems and instances without affecting the
performance on easy problems. Slowing down the increase of λ with small values of F can be
helpful on difficult problems but as a trade-off it can slightly increase the runtime on easy problems.

On difficult problems both the (1 + 1) fEA and the (1 + (λ, λ)) GA with non-standard param-
eters tend to have fewer outliers and fewer failures than all the versions of the self-adjusting
(1 + (λ, λ)) GA. This is largely because both algorithms are tailored to perform large jumps with
high probability when stuck in local optima. Because of this, both algorithms have a worse perfor-
mance on easy problems with the (1 + (λ, λ)) GA, with non-standard parameters being the worst
algorithm when easy problems (OneMax, WNP and some instances of NP) are encountered.

9 CONCLUSIONS

We have provided a rigorous runtime analysis of the self-adjusting (1 + (λ, λ)) GA (considering
the best offspring from the mutation phase during the selection step) for general function classes
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by presenting a fitness-level theorem for the self-adjusting (1 + (λ, λ)) GA that is easy to use and
enables a transfer of runtime bounds from the (1 + 1) EA to the self-adjusting (1 + (λ, λ)) GA.

The parameter control mechanism in the original self-adjusting (1 + (λ, λ)) GA tends to diverge λ
to its maximum on multimodal problems. Then the algorithm effectively simulates a (1 +n) EA with
the default mutation rate of 1/n. For the multimodal benchmark problem class Jumpk , we proved
upper and lower runtime bounds that are tight up to lower-order terms, showing that despite using
crossover the self-adjusting (1 + (λ, λ)) GA is not as efficient as other crossover-based algorithms.

Imposing a maximum value λmax can improve performance, however then the problem remains
of how to set λmax if no problem-specific knowledge is available. The generic choice λmax = n/2
makes the self-adjusting (1 + (λ, λ)) GA perform random search steps during the mutation phase
in case the algorithm gets stuck. This guards against deceptive problems and the algorithm still
retains its original exploitation capabilities in the crossover phase.

We showed that the parameter landscape with respect to the impact of λmax on the runtime of
the self-adjusting (1 + (λ, λ)) GA on Jumpk is bimodal for appropriate n and k , and the optimal
parameter changes drastically depending on the problem size n and the jump size k . The param-
eter landscape features two optima, one located in a wide basin of attraction that maximises the
probability of finding the global optimum in the crossover phase and the other hidden in a narrow
basin of attraction that maximises the probability of finding the global optimum during the mu-
tation phase. For small k the wider basin of attraction leads to the optimal parameter value, but
for larger k the optimal parameter value changes to the narrow basin of attraction. For large k ,
considering the mutation offspring in the selection phase gives a large performance improvement
to the (1 + (λ, λ)) GA. This fluctuating parameter landscape combined with it being bimodal makes
parameter selection difficult.

Additionally, we investigated resetting λ to 1 after an unsuccessful generation at the maximum
value. This makes the self-adjusting (1 + (λ, λ)) GA cycle through the parameter space, approaching
optimal or near-optimal parameter values in every cycle in spite of the parameter landscape. We
recommend to choose F = (1 + 1/n)4 if a slow growth of λ is desired. For Jumpk , this strategy
gives the same expected runtime as that of the (1 + 1) EA with the optimal mutation rate and fast
mutation operators, up to small polynomial factors.

Finally, the empirical results show that the original self-adjusting (1 + (λ, λ)) GA tends to in-
crease λ to its maximum, and this yields the worst performance on most multimodal problems
tested, while the modifications of the parameter control mechanism improved its performance.
Additionally, these modifications do not significantly affect the algorithm’s performance on easy
problems. This suggests that for common optimisation problems it is better to use the parameter
control variants (capping or resetting λ) studied here than the original self-adjusting (1 + (λ, λ))
GA.
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